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Abstract
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In this dissertation we develop and present a leakproof approach to strongly cou-

pled fluid-structure interactions in the presence of compressible fluids.

First we present a novel semi-implicit formulation of the Euler equations that

separates the flux terms into an advection component and an acoustic component.

The advection terms are treated explicitly using a standard flux-based scheme, and

an implicit system of equations are derived for the pressure of the flow field. The

implicit system of equations for pressure closely mirrors Poisson’s equation that arises

for incompressible flow, and indeed one obtains the Poisson equation for pressure in

the limit as the sound speed goes to ∞. By treating the pressure implicitly we

can alleviate the often-stringent acoustic component of the CFL restriction, and the

resulting well-conditioned method depends only on the bulk velocity of the flow field

for its time step restriction.

Next the implicit system of equations for pressure are integrated into a monolithic

coupled system that robustly and stabily captures two-way coupled fluid-structure in-

teractions. This formulation is quite general, and works with arbitrary fluid equations

of state as well as both rigid and deforming structures without any special treatment.

This tightly-coupled system captures the entire feedback loop that arises as fluid pres-

sures and structure velocities interact, and so the method is suitable for capturing

the behavior of flow near infinitesimally light structures (unlike partitioned methods)

as well as extremely heavy structures. We exactly conserve momentum and kinetic

energy within the coupled system, and hence naturally handle highly non-linear phe-

nomena such as shocks, contacts and rarefactions near the fluid-structure interface.

Note that this the method is not conservative near the interface during the advection

step.

The advection stage is addressed in the third chapter, and a conservative semi-

Lagrangian advection scheme is developed that works by supplementing a standard

semi-Lagrangian advection with a conservative limiter and a forward-advection step.

The conservative limiter clamps material motion from the first semi-Lagrangian step,

guaranteeing that no new material is created, while the second forward-advection

step is used to push forward any material that was left behind by the first step.

We consider this advection scheme in its original habitat (incompressible flows), and
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show that this method can be used to exactly conserve mass and momentum in such

a flow. More interestingly, as the method works by tracing characteristic curves and

interpolating values it is unconditionally stable. With this in mind we demonstrate

that this unconditionally stable conservative advection scheme can be used to remove

any and all remaining time step restrictions from the flux-split compressible flow

previously introduced.

Finally, we introduce cut cells and partial volumes into the fluid-structure solver

from Chapter 3 and modify the conservative semi-Lagrangian advection scheme to

capture these small, irregular cell volumes without introducing any of the time step

restrictions typically associated with cut cells. The semi-Lagrangian advection is lim-

ited to first order accuracy both in time and space, and so it is hybridized with a flux-

based scheme and total variation-diminishing Runge-Kutta time integration, yielding

a method that maintains high resolution accuracy in the bulk of the flow. The semi-

Lagrangian method works by tracing characteristics, and so we modify it to enforce

non-penetration through the structure interface by incorporating a temporal visibil-

ity map into the advection and clamping stages of the conservative semi-Lagrangian

advection solver. Unlike previous methods, we do not require any complex geomet-

ric time evolution of volumes of material, nor do we require any special treatment

for swept or uncovered cells. The resulting method can handle thin, moving solid

structures in a fully conservative manner without any material leaking across the

interface.
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Chapter 1

Introduction

The Direct Numerical Simulation (DNS) of fluid-structure interactions has recently

received significant attention. Many of these works concern themselves with fluid flow

in the incompressible flow regime, see for example [10, 46] and the references within,

but researchers are increasingly giving attention to the two-way coupled interactions

that arise in compressible flows, see for example [4, 35, 20]. If one desires to use a

state-of-the-art Eulerian method on the fluid flow, and a state-of-the-art Lagrangian

method for the structure solver, then this requires a numerical method for coupling

these two solvers together. Fluid-based forces need to be transferred to the solid

structure, and position and velocity-based boundary conditions must be applied to

the fluid based on the current location and movement of the solid structure. One of the

primary research areas in solid-fluid coupling concerns the stability of the numerical

methods for coupling and is essentially focused on the feedback loop where pressure

is applied to the solid, the solid structure reacts and deforms, and subsequently

imposes position and velocity-based boundary conditions on the fluid. While the most

straightforward approach is simply to treat the coupling in an explicit way, called a

partitioned method [112, 84, 21], researchers have focused quite a bit of attention on

so-called monolithic methods that employ higher degrees of implicit coupling [88, 31],

in order to stabilize parts or all of this feedback loop. Another important issue regards

the modifications that the Eulerian method requires to treat cells cut by the solid

structure as well as those that are covered or uncovered as the structure sweeps across

1



CHAPTER 1. INTRODUCTION 2

the Eulerian grid—especially in regards to stability and conservation. A common

approach for treating these issues on the Eulerian grid is to fill the cells that are

covered or partially covered by the solid structure with ghost values of some type,

and then proceed in the standard way ignoring the solid all-together. This alleviates

stability restrictions for cut cells, automatically creates new fluid in uncovered cells,

and has been theme of the approach for the ghost fluid method [23] and the immersed

boundary method (see [82] and the references therein, including [80, 81]). The fluid

placed in these ghost cells must include the added mass effect of the solid, i.e. if the

solid is heavier or lighter than the surrounding fluid, the ghost cells must properly

represent that mass difference. The added mass can be accounted for in thin solid

structures as well (see for example [114]), simply by adding that mass to the fluid

cells that contain the solid structure. Whereas ghost cell methods overcome stability

restrictions for the cut cells, they do not maintain either conservation nor the ability

for the fluid on one side of the structure to remain on that side, i.e. the fluid can leak

across to the other side of the structure. In order to address these concerns, authors

have focused on cut cell methods, see for example [34, 35] and the references therein.

The main issue with these methods is in the treatment of small cell volumes, which

can impose additional time step restrictions on the flow solver if special techniques

such as cell merging near the structure interface are not used. Furthermore these

methods can become extremely complex if the solid structure is sweeping across the

grid. In fact, most approaches to treating covering and uncovering of cells are non-

conservative, and even then there can be issues [91]. Generally speaking uncovered

cells need to be replaced with a valid value, and one can do this with any number of

methods that range from simply interpolating from nearby neighbors to using upwind

information to populate these cells, see for example [61, 56, 100].

This dissertation builds towards and ultimately delivers a novel treatment for the

cut cells and partial cell volumes near the structure interface. This is done in four

stages; first, we propose a novel flux-split formulation of the governing equations for

compressible flow and demonstrate that by treating the accoustic terms implicitly we

can alleviate that component of the time step restriction, leaving only advection to

limit the time step of the flow [50]. Next, the implicit accoustic solve is integrated into
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a monolithic coupled fluid-structure solver, capturing the entire feedback loop between

the fluid pressures and structure velocities. This implicit coupling appears to avoid

adding any new time step restrictions to the flow, and conservatively captures the

momentum and kinetic energy that moves between the structure and its surrounding

fluid [31]. At this stage however the explicit advection solver is not conservative

near the fluid-structure interface, and instead relies on ghost cells to populate swept

and uncovered cells. In order to address this we then develop a conservative semi-

Lagrangian advection scheme, and show that it is capable of conserving material as

it moves around the grid [52]. Finally, we develop a number of extensions to this

conservative advection scheme in order to make it suitable for use near the fluid-

structure interface [30].

Using the semi-Lagrangian method to handle cells near the structure interface is

similar in spirit to both volume of fluid (VOF) [38] and arbitrary Lagrange-Eulerian

(ALE) [37] methods, which both explicitly move information along characteristics

in a Lagrangian manner and both explicitly conserve the material. Although some

versions of the volume of fluid scheme intersect flux-swept volumes with the volume

fraction, others actually mesh up the volume fraction and move it through the grid

in a Lagrangian fashion. If one treats each vertex of the meshed-up VOF polygon

as a Lagrangian particle, continuous collision-detection can be applied to it in the

same fashion as we do for our semi-Lagrangian rays. In this manner one can achieve

conservation, stability and also prevent material from interpenetrating volumetric

solids or crossing over thin solids. Afterwards, this advected polygon of volume needs

to be deposited and stored on the grid so that it can be remeshed into the VOF

representation at the next time step. The issue here comes in the representation;

that is, if a cell is cut by a thin structure one needs to represent that volume fraction

on the grid in a way that does not cross over the structure. The semi-Lagrangian

method stores information at grid points and therefore overcomes this, but a volume

of fluid method would need to reconstruct the geometry in such a way that cuts the

cells across the interface designated by the solid boundary. Similarly ALE methods

push along the vertices of their mesh in a manner similar to both the VOF and

semi-Lagrangian methods, and thus those vertices can be collided with the structure.
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Again, one of the more complex aspects of this is in keeping the structure for the

ALE mesh commensurate with the solid structure interface. Moreover, another issue

with the ALE method is that pushing nodes around in a Lagrangian fashion and

colliding them with the structure interface can result in inversion, and unless one

wants to untangle the ALE mesh [101] and attempt to fit it to the solid structure, a

remapping method needs to be employed where the material is dropped back down

onto some Eulerian mesh and then remeshed in a way that fits the structure. In

general we believe that both VOF and ALE methods could be applied in a manner

similar to what we propose for our method, as long as one could work out the details

for hybridization with the flux-based scheme and for redepositing the material near

the solid interface onto an Eulerian grid. However, we feel that the conservative semi-

Lagrangian approach is a very simple and straight-forward way to do this. We refer

the interested reader to the following relevant VOF [36, 76, 2, 3, 64] and ALE papers

[49, 70, 69, 74, 75, 7].

The material presented in this thesis is based on previously published works [50],

[52], [31] and [30].



Chapter 2

Semi-implicit compressible flow

We propose a novel method for alleviating the stringent CFL condition imposed by

the sound speed in simulating inviscid compressible flow with shocks, contacts and

rarefactions. Our method is based on the pressure evolution equation, so it works for

arbitrary equations of state, chemical species etc, and is derived in a straight-forward

manner. Similar methods have been proposed in the literature, but the equations

they are based on and the details of the methods differ significantly. Notably our

method leads to a standard Poisson equation similar to what one would solve for

incompressible flow, but has an identity term more similar to a diffusion equation.

In the limit as the sound speed goes to infinity, one obtains the Poisson equation for

incompressible flow. This makes the method suitable for two-way coupling between

compressible and incompressible flows and fully implicit solid-fluid coupling, although

both of these applications are left to future work. We present a number of examples

to illustrate the quality and behavior of the method in both one and two spatial

dimensions, and show that for a low Mach number test case we can use a CFL

number of 300 (whereas previous work was only able to use a CFL number of 3 on

the same example).

5
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2.1 Introduction

In this paper, we focus on highly nonlinear compressible flows with shocks, contacts

and rarefactions, for example the Sod shock tube. Traditionally these types of prob-

lems are solved with explicit time integration (Runge-Kutta methods, ENO, WENO

etc, see e.g. [92, 93, 40]). Although these methods produce high quality results, small

time steps are required in order to enforce the CFL condition of information moving

only one grid cell per time step. While this is understandable for very high Mach

number flow where |u|, |u − c| and |u + c| are all of similar magnitude, it is too re-

strictive for flows where the sound speed, c, may be much larger than |u|. Moreover

some flow fields might have both high Mach number regions where shock waves are

of interest as well as low Mach number regions where the material velocities are im-

portant. In this case, a large number of time steps are required if one is interested in

the motion of the fluid particles over an appreciable distance in the low Mach number

regions. Thus, it can be quite useful to have methods that avoid the stringent CFL

time step restriction imposed by the acoustic waves and instead use only the material

velocity CFL restriction (albeit one would expect some loss of quality because of the

implicit treatment of the acoustic waves).

To alleviate the stringent CFL restriction, [41] proposed both a non-conservative

and a conservative scheme. Their non-conservative scheme builds on the predictor-

corrector type scheme of [109] to derive an elliptic pressure equation quite similar

to ours, but for an adiabatic fluid. Our method is similar in spirit to [41, 103, 104,

107] where the calculation is divided into two parts: advection and non-advection.

The advection terms are treated with explicit time integration, and thus the CFL

restriction on the material velocity remains. Whereas one can use a standard method

such as ENO in solving the advection terms, we found that when coupled to an

implicit solution of the pressure equations (that is inherently central-differenced) the

standard ENO method sometimes leads to spurious oscillatory behavior. Thus we

designed a new ENO method geared towards a MAC grid discretization of the data,

making it more similar to incompressible flow. We call this MAC-ENO or MENO. The

remaining non-advection terms are solved using an implicit equation for the pressure
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using a standard MAC grid type formulation. Since the MAC grid is dual in both

velocity and pressure (noting that the MAC grid pressure needs to live at cell faces

for flux based methods), one needs to interpolate data back and forth.

We base the derivation of our method on the pressure evolution equation as dis-

cussed in [24], thus making it valid for general equations of state, arbitrary chemical

species etc. Thus, our derivation has fewer assumptions and is more straight forward

than previous work, especially those based on preconditioners. For example, [103]

makes two critical assumptions in their derivation of the implicit equation for pres-

sure. In approximating the derivative of momentum they discard a ∆t∇p
ρ term, and

their pressure evolution equation is missing the advection term. Also, our method

is fully conservative and thus shocks are tracked at the right speed. We present a

number of traditional examples for highly non-linear compressible flows including the

Sod shock tube, interacting blast waves, and in two dimensions we show Flow Past

a Step, Double Mach Reflection of a Strong Shock, and a Circular Shock. We also

demonstrate that the method works well for low Mach number flow, taking an exam-

ple from [42] where the authors obtain reasonable results with a CFL number of 3.

Notably, our method allows a CFL number of 300 (two orders of magnitude more).

2.2 Numerical method

Let us consider the one dimensional Euler equations,





ρ

ρu

E





t

+





ρu

ρu2 + p

Eu+ pu





x

= 0,

with ρ being the density, u the velocity, E the total energy per unit volume and p the

pressure. The flux term can be separated into an advection part and a non-advection

part,

F1(U) =





ρu

ρu2

Eu



 , F2(U) =





0

p

pu



 . (2.1)
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We first compute the Jacobian of the advection part

J =





0 1 0

−u2 2u 0

−Eu
ρ

E
ρ u



 .

All the Jacobian’s eigenvalues are equal to u, and it is rank deficient with left eigen-

vectors of (u,−1, 0) and (E/ρ, 0,−1) and right eigenvectors of (1, u, 0)T and (0, 0, 1)T .

Since all the characteristic velocities are identical, we can apply component wise up-

winding to F1(U) without having to transform into the characteristic variables first

(as in [26]). Moreover, this advection part only requires a time step restriction based

on u.

2.2.1 Implicit pressure update

The multi-dimensional Euler equations are





ρ

ρu

ρv

ρw

E





t

+





ρu

ρu2

ρuv

ρuw

Eu





x

+





ρv

ρuv

ρv2

ρvw

Ev





y

+





ρw

ρuw

ρvw

ρw2

Ew





z

+





0

∇p

∇ · (p#u)



 = 0,

where #u = (u, v, w) are the velocities. Here we have advection components in each

of the 3 spatial dimensions, and they can be handled as outlined previously in a

dimension by dimension fashion (as in [93]).

We apply a time splitting as is typical for incompressible flow formulations, first

updating the advection terms to obtain an intermediate value of the conserved vari-

ables (ρ)∗, (ρu)∗, and E∗, and afterward correct these to time tn+1 using an implicit

pressure. Since the pressure does not affect the continuity equation, ρn+1 = ρ∗. The

non-advection momentum and energy updates are

(ρ#u)n+1 − (ρ#u)∗

∆t
= −∇p (2.2)
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and
En+1 − E∗

∆t
= −∇ · (pu). (2.3)

Taking motivation from the standard incompressible flow formulation (which uses

the momentum equation to derive an implicit equation for pressure), we divide equa-

tion (2.2) by ρn+1,

#un+1 = #u" −∆t
∇p

ρn+1
, (2.4)

and take its divergence to obtain

∇ · #un+1 = ∇ · #u" −∆t∇ ·
(

∇p

ρn+1

)
. (2.5)

In the case of incompressible flow, we would set ∇ · #un+1 = 0, but for compressible

flow we instead use the pressure evolution equation derived in [24],

pt + #u ·∇p = −ρc2∇ · #u. (2.6)

If we fix ∇ · #u to be at time n + 1 through the time step (making an O(∆t) error),

we can substitute in equation (2.5) to get

pt + #u ·∇p = −ρc2∇ · #u" + ρc2∆t∇ ·
(

∇p

ρn+1

)
, (2.7)

which is an advection-diffusion equation with a source term. Discretizing the #u ·∇p

advection term explicitly, using a forward Euler time step, and defining the diffu-

sive pressure at time tn+1 as is typical for backward Euler discretization, gives after

rearrangement

pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= (pn − (#un ·∇pn)∆t)− ρn(c2)n∆t∇ · #u". (2.8)

Note we have discretized ρc2 at time tn. This equation can be further simplified by

using the advection equation for pressure,

pa − pn

∆t
+ #un ·∇pn = 0
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to obtain

pa = pn − (#un ·∇pn)∆t, (2.9)

where pa is an advected pressure which can be computed using HJ ENO [79] or

semi-Lagrangian advection [14]. Substituting in equation (2.8) we obtain

pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= pa − ρn(c2)n∆t∇ · #u". (2.10)

We discretize this equation at cell centers (which is typical for advection-diffusion

equations) and thus need to define velocities at cell faces for ∇ · #u". Consider two

Figure 2.1:

adjacent grid cells, one centered at Xi and one centered at Xi+1. We divide these

into four regions Ci,L, Ci,R, Ci+1,L, Ci+1,R, where (Ci,R ∪Ci+1,L) represents a dual cell

(see figure 2.1). Then equation (2.2) for Ci,R is

(ρu)n+1
i,R − (ρu)∗i,R

∆t
= −

pn+1
i+1/2 − pn+1

i

∆x/2
. (2.11)

Similarly for Ci+1,L we have

(ρu)n+1
i+1,L − (ρu)∗i+1,L

∆t
= −

pn+1
i+1 − pn+1

i+1/2

∆x/2
. (2.12)



CHAPTER 2. SEMI-IMPLICIT COMPRESSIBLE FLOW 11

Adding these equations together and dividing by (ρi + ρi+1) yields

ûn+1
i+1/2 − û∗

i+1/2

∆t
= −

pn+1
i+1 − pn+1

i

∆xρ̂n+1
, (2.13)

where ûi+1/2 =
(ρu)i,R+(ρu)i+1,L

ρi+ρi+1
= (ρu)i+(ρu)i+1

ρi+ρi+1
can be thought of as a density-weighted

face velocity, and ρ̂i+1/2 =
ρi+ρi+1

2 is the cell face density. Note that we currently use

(ρu)i,R = (ρu)i and (ρu)i+1,L = (ρu)i+1, although higher order approximations could

be used. Using this discretization on equation (2.10) yields

[
I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT #̂u", (2.14)

where G is our discretized gradient operator and −GT is our discretized divergence

operator. This is solved to obtain pn+1 at cell centers.

In summary, instead of using an equation of state (EOS) to find the pressure for

use as a flux in both conservation of momentum and energy, we use equation (2.14).

The EOS still plays a role because it is used to determine the time tn pressures which

factor into pa and is also used to determine (c2)n. In figure 2.2 we show an example

calculation of the pressure for our Sod shock tube example. In the picture we plot

the pressure using the equation of state at time tn, i.e. pn, the pressure calculated

using equation (2.14), i.e. our pn+1, and also the pressure calculated using the EOS

applied to the conservative variables at time tn+1, i.e. pn+1
EOS. Notice in the figure that

the pressure calculated from equation (2.14) is a good approximation to what the

pressure will be at the next time step (i.e. pn+1
EOS) emphasizing the implicit nature of

our scheme. pn is the pressure used in a typical explicit scheme.

It is interesting to note that this derivation does not require an ideal gas assump-

tion, and hence should be general enough to work with any EOS (even multi-species

flow [24]).
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 0

 0.05

 0.1

 0.15
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 0.25
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 0.74  0.745  0.75  0.755  0.76  0.765  0.77  0.775  0.78

tn EOS pressure
tn+1 EOS pressure

tn+1 implicit pressure

Figure 2.2: A blow-up of the pressure plot for example 6.1.1 at time t(n) = .149s
and t(n+ 1) = .15s, showing that the implicit pressure calculated in equation (2.14)
is a good approximation to what the pressure will be at time tn+1 emphasizing the
implicit nature of our scheme. pn is also plotted to emphasize the difference between
using an implicit and explicit pressure.

2.2.2 Updating momentum and energy

To obtain the correct shock speeds we use a flux based method and thus need the

pressure at cell faces for equations (2.2) and (2.3), and the velocity at cell faces for

equation (2.3). Applying conservation of momentum to the control volumes Ci,R and

Ci+1,L (see figure 2.1) gives

Dui,R/Dt = (pi − pi+1/2)/(∆xρi,R/2)

and

Dui+1,L/Dt = (pi+1/2 − pi+1)/(∆xρi+1,L/2).
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The constraint that the interface remain in contact implies thatDui,R/Dt = Dui+1,L/Dt,

which can be used with the aforementioned equations to solve for the pressure at the

flux location Xi+1/2 as

pi+1/2 =
pi+1ρi + piρi+1

ρi+1 + ρi
. (2.15)

For solid wall boundaries, we reflect the pressure and density values as usual, and

then use equation (2.15). The cell face velocity is computed via equation (2.13), and

pi+1/2ûi+1/2 is used in equation (2.3).

2.3 Time step restriction

The eigenvalues of the Jacobian of the advection part of the flux are all u. Since

we solve the acoustic component implicitly, we no longer have a severe time step

restriction determined by the speed of sound c, and all that remains is to find an

estimate for the maximum value of |u| throughout the time step. Simply using un is

not enough, since e.g. Sod shock tube starts out with an initial velocity identically

zero and thus un would imply an infinite ∆t. To alleviate this, we add a term that

estimates the change in velocity over a time step similar to what was done in [43].

Assuming the flow is smooth, we combine conservation of mass and momentum to

give an equation for the velocity, ut + u · ∇u + ∇p
ρ = 0. The temporal update of

this equation would advect velocity based on the u ·∇u term, but also increase the

velocity by an amount equal to ∇p
ρ . In one spatial dimension, we use this to estimate

the velocity at the end of the time step as

(
|un|max+

|px|
ρ ∆t

∆x

)
and the CFL condition

becomes

∆t

(
|un|max +

|px|
ρ ∆t

∆x

)
≤ 1. (2.16)

This is quadratic in ∆t with solutions

−|un|max −
√

|un|2max + 4 |px|
ρ ∆x

2|px|/ρ
≤ ∆t ≤

−|un|max +
√

|un|2max + 4 |px|
ρ ∆x

2|px|/ρ
.
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As the lower limit is always non positive and ∆t ≥ 0, we only need to enforce the upper

bound. As px → 0, both the numerator and denominator vanish and thus we obtain

a more convenient time step restriction by replacing the 2nd ∆t in equation (2.16)

with this upper bound to obtain

∆t

2



 |un|max

∆x
+

√(
|un|max

∆x

)2

+ 4
|px|
ρ∆x



 ≤ 1. (2.17)

Note that this is not linear in ∆x, but as ∆x → 0 we obtain a more typical CFL

condition ∆t < ∆x
|un|max

. In two spatial dimensions our CFL follows along the lines of

[43]’s equation 95 and is given by:

∆t

2



 |u|max

∆x
+

|v|max

∆y
+

√(
|u|max

∆x
+

|v|max

∆y

)2

+ 4
|px|
ρ∆x

+ 4
|py|
ρ∆y



 ≤ 1.

All of our examples are stable for CFL number α = .9, and all of our examples were

unstable for α = 1.3. Some examples (e.g. example 6.1.8) blow up for α = 1.

2.4 Modified ENO scheme

When using traditional ENO methods for the advection part of our equations (as in

[93]), we obtained excessive spurious oscillations. This seems to be related to our

dual cell center and MAC grid formulation, thus we device a new ENO scheme which

better utilizes that dual formulation. We call this Mach-ENO or MENO. The main

idea is to replace the advection velocity with the MAC grid value defined at the

flux in question, i.e. û. The lowest level of the divided difference table is typically

constructed with the physical fluxes, i.e. ρu, ρu2 and Eu for F1(U) in equation (2.1).

A dissipation term is added for the local and global Lax-Friedrichs versions. Consider

constructing an ENO approximation for the flux at Xi+1/2. Locally, we would use

a divided difference table with base values corresponding to the physical fluxes plus

or minus the appropriate dissipation. Our modification is to replace ρjuj, ρjuj
2, and

Ejuj with ρjûi+1/2, ρjujûi+1/2, and Ejûi+1/2 leaving the dissipation terms unaltered.
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Figure 2.3: Sod shock tube problem at t = .15s. Left: Standard ENO-LLF (Local
Lax-Friedrichs) using 401 grid points (green) and 1601 grid points (red). Right: The
base 1601 grid points solution is the same as in the left figure, but the coarse grid
calculation (with 401 grid points) is done with the new MENO scheme. Velocity is
shown in both figures. Both simulations were done with explicit time integration and
a full characteristic decomposition in order to demonstrate that the new ENO schemes
performs similar to the old one when one is not using our new implicit discretization
of the pressure.

Note that ûi+1/2 is fixed throughout the divided difference table similar to the way

one fixes the dissipation coefficient.

In order to validate our new MENO scheme, we compared it to the standard

scheme from [93] for the standard Sod shock tube in Figure 2.3. For this problem and

other fully explicit simulations the results were fairly similar, but when we ran the

simulations with our semi-implicit formulation the MENO scheme performed much

better, and in fact the standard ENO scheme was not successful in producing any

solution whatsoever for figure 2.11 in our examples section.

2.5 Time integration

While the explicit component of our update is an upwind scheme, the implicit com-

ponent is centrally-differenced. This tends to introduce more dispersive rather than
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dissipative errors to the solution (i.e. there is more of an imaginary component to the

eigenvalues), which suggests the use of Runge-Kutta over forward Euler.

We use two variations of the third order TVD Runge-Kutta scheme [92] in all

of our examples. The first is to perform Runge-Kutta on just the advection part,

F1(U), with only one final implicit solve for F2(U). The second variation is to carry

out both F1(U) and F2(U) for each Runge-Kutta stage, noting that this has three

times the computational cost as far as the implicit solution of F2(U) is concerned.

In general we observed better performance, especially in controlling overshoots, when

using the second variation (see figure 2.4). However, some examples (in particular the

high Mach number ones) do tend to show more oscillations (see figure 2.4, bottom).

These oscillations are less predominant when combined with MENO, so we show all

of our examples with the second variation.

2.6 Numerical results

2.6.1 One dimensional validation

For the one dimensional tests, we use a computational domain of [0, 1], 401 grid

points, and also plot a baseline solution using 1601 grid points in the standard fully

explicit ENO method as in [93]. A second order ENO was used along with the CFL

number of .5. Unless otherwise noted the maximum Mach number in each example

lies within the range (.9, 2.5). All units are in S.I. Generally speaking our method is

a perturbation of those proposed by [103, 104] and thus demonstrates similar quali-

tative behavior. Timings are shown in table 2.1. In particular note that the implicit

scheme is generally more efficient than the explicit scheme predominantly because

we avoid the characteristic decomposition and can advect all three independent vari-

ables simultaneously because they all have the same eigenvalue u. At first glance

one might assume that the necessity of a pressure Poisson equation would cancel out

these efficiency gains, but practical experience shows only five or six iterations of con-

jugate gradients is required to reach a reasonable tolerance. It is unclear whether our

newly proposed semi-implicit method would have these slight efficiency gains across
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a wider number of examples and in multiple spatial dimensions, however for the low

Mach number flow problems for which it was designed (such as example 6.1.8) it is

significantly more efficient than the explicit method.

Sod shock tube

Our first test case is a standard Sod shock tube with initial conditions of

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 2.5, which indicate well resolved shock, rarefaction

and contact solutions. Since our method is conservative, we get the correct shock

speeds. The results are comparable to that of [42] and [103].

Lax’s shock tube

Lax’s shock tube is similar in nature to Sod shock tube, except that the initial con-

dition has a discontinuity in the velocity:

(ρ(x, 0), u(x, 0), p(x, 0)) =





(.445, .698, 3.528) if x ≤ .5,

(.5, 0, .571) if x > .5.

Our results are shown in Figure 2.6. Again, the results are comparable to the previous

work.

Strong shock tube

The Strong shock tube problem poses initial conditions that generates a supersonic

shock:

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1, 0, 1010) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 2.7. The scheme admits some oscillations near the
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rarefaction wave, and we see no notable difference in simulation time when compared

to the explicit simulation. With that in mind, we note that the main advantage of

the proposed method is to take time steps irrespective of the sound speed values;

in cases of high Mach number flows (or high Mach number regions of the flow – if

asynchronous time integration is used), one could use a typical ENO scheme.

Mach 3 shock test

The initial conditions for the Mach 3 shock test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =





(3.857, .92, 10.333) if x ≤ .5,

(1, 3.55, 1) if x > .5.

Our results are shown in Figure 2.8. As above we do note some oscillations near the

rarefaction wave.

High mach flow test

The initial conditions for the High mach flow test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =





(10, 2000, 500) if x ≤ .5,

(20, 0, 500) if x > .5.

As noted in [42] the Mach number in this test can reach as high as 240. Our results

are shown in Figure 2.9.

Interaction of blast waves

Here we present a test of two interacting blast waves. This problem was introduced

by [102] and involves multiple strong shock waves. The initial conditions for the test
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are:

(ρ(x, 0), u(x, 0), p(x, 0)) =






(1, 0, 103) if 0 ≤ x < .1,

(1, 0, 10−2) if .1 ≤ x < .9,

(1, 0, 102) if .9 ≤ x ≤ 1.

We also have solid wall boundary conditions at x = 0 and x = 1. Our results are

shown in Figure 2.10 which shows that we achieve very accurate results.

Two symmetric rarefaction waves

In this test there are two rarefaction waves going in opposite directions from the

center of the domain. This causes very low density regions near the center of the

domain. The initial conditions for the test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1,−2, .4) if x ≤ .5,

(1, 2, .4) if x > .5.

Our results are shown in Figure 2.11. Our results are comparable to that of [42] and

[103]. Note that there is an unphysical pulse in the internal energy field near the low

pressure region, caused by overheating (see e.g. [25]).

Smooth flow test (Mach zero limit)

The initial conditions for the zero mach limit test are given by:

u(x, 0) = 0

p(x, 0) = p0 + εp1(x)

p1(x) = 60 cos(2πx) + 100 sin(4πx)

ρ(x, 0) =

(
p(x, 0)

p0

) 1
γ

ρ0

Where ρ0 = 1, p0 = 109, and ε = 103. Since the flow is smooth and there are no

shocks in this test, we have used a single implicit solve per time step. This test

is dominated by acoustic waves (as observed in [42]). We can take time steps as
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large as is permitted by our CFL condition in equation (2.17). This permits time

steps three orders of magnitude greater than those permitted by sound-speed based

CFL. However, as with all implicit schemes, taking too large a time step can lead

to inaccurate results. Thus, in order to get sufficient accuracy, we clamp our time

step to be a fixed multiple of the explicit time step (which is calculated using the

sound-speed based CFL). In figure 2.12 we use 3 times the explicit time step and

show convergence via grid resolution.

In a second suit of tests we show that we can increase the grid resolution without

the need to refine the time step. The timing results for this experiment are available

in table 2.2, where ∆t remains fixed as the grid resolution goes up as high as 320, 000

grid cells. At that point the effective sound speed CFL is 300. Numerical results

are plotted in figure 2.13 and table 2.2 summarizes the results. In particular we note

that the newly proposed implicit method permits a fixed time step all the way up to

320, 000 grid points. This allows the wall clock simulation time to scale approximately

linear to the size of the problem (since we solve the Poisson equation using conjugate

gradients, which has superlinear complexity – however, note that one only needs the

solver to converge in the sense of truncation error as opposed to round-off error). On

the other hand, in explicit methods the simulation time grows quadratically, becoming

impractical at 320, 000 grid points. Note that since we are not refining the time step,

we do not expect to see any further convergence in the solution.

2.6.2 Flow past a step test

Our first two dimensional experiment is similar to the one described in [25]. We

assume an ideal gas with γ = 1.4. The test domain is 3 units long and 1 unit wide,

with a .2 unit high step which is located .6 units from the left hand side of the

tunnel. The initial conditions are ρ = 1.4, p = 1 and u = 3 and v = 0 everywhere

in the domain. We apply an inflow boundary condition on the left hand side of the

domain, and an outflow boundary condition on the right hand side of the domain. A

reflective solid wall boundary condition is applied for the top and bottom boundaries

of the domain. We show numerical results at t = 4s on a grid of resolution 120x40 in
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figure 2.14.

2.6.3 Double mach reflection of a strong shock

In a computational domain of [0, 4]× [0, 1], a planar Mach 10 shock hits a reflecting

boundary that lies along the bottom wall of the domain along x ∈ [16 , 4]. The plane

of the shock begins at (16 , 0) and makes a 60◦ angle with the reflecting plane. The

left and bottom (for x ∈ (0, 16)) boundary conditions are given by the postshock

condition, the right boundary by a zero-gradient condition, and the top boundary is

set to describe the exact motion of the Mach 10 shock. If we take #n to be the unit

vector that lies normal to the planar shock, then the initial values are given by:

(ρ(x, y, 0), u(x, y, 0), p(x, y, 0)) =





(1.4,#0, 1) preshock

(8, 8.25#n, 116.5) postshock
.

Our method (see figure 2.15) compares well with those provided in [102], which

provides a description of this example and presents numerical results comparing the

performance of various methods in this problem. As is done in previous work we only

show the domain of interest ([0, 3]× [0, 1]).

2.6.4 Circular shock test

The circular shock test has an initial condition prescribed as

(ρ, u, v, p) =





(1, 0, 0, 1) if r ≤ .4

(.125, 0, 0, .1) if r > .4,

where r =
√

x2 + y2. Numerical results are shown in figure 2.16. The same test was

shown in [104]. Our results indicate well resolved shock and contact solutions along

with correct speed shock calculations.
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2.7 Conclusions and future work

We have presented a method for alleviating the stringent CFL condition imposed

by the sound speed in highly non-linear compressible flow simulations. A fractional

step procedure combined with the pressure evolution equation is used. The method

works for arbitrary equations of state, and in the limit as the sound speed goes to

infinity it yields the Poisson equation for incompressible flow. We also presented a

Mach-ENO or MENO scheme which better utilizes a dual cell center and MAC grid

formulation. The numerical experiments on various benchmark problems for one and

two dimensions indicate that our semi-implicit method obtains well resolved shock,

rarefaction and contact solutions. Since our method is conservative, we also obtain

correct shock speeds. The smooth flow example illustrates the ability of our method to

take significantly large time steps for low Mach number flows as compared to explicit

methods. In future work we plan to extend our approach to handle two-way coupling

between compressible and incompressible flows, as well as fully implicit solid-fluid

coupling.

2.8 Appendix: boundary conditions

Figure 2.14 requires the handling of inflow and outflow boundary conditions. We

define Uout to be the outgoing state and Uin to be the ingoing state. The outgoing

state, Uout, is obtained by simple extrapolation whereas the ingoing state, Uin, is

obtained by attenuating Uout towards specified far-field values. After defining Uout

via extrapolation, we average the primitive variables to cell flux on the boundary of

the domain, and use those values to compute a characteristic decomposition. If the

pth characteristic field indicates ingoing information, then when applying the ENO

scheme in this characteristic field we use Uin for the ghost node values. Otherwise

Uout is used. Note for higher order schemes boundary values will be needed for fluxes

on the interior of the domain as well, and we choose the ghost nodes (as Uin or Uout)

in the same fashion.

Our ingoing state, Uin, is obtained by attenuating the extrapolated state, Uout,
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towards a given far field state, Ufar. This is accomplished by multiplying Uout with

each of the left eigenvectors, attenuating if the eigenvalue in that characteristic field

indicates an ingoing wave, and then multiplying by the right eigenvector. Defining

the scalar characteristic information in each field as ξp = LpUout, we would attenuate

ξp towards ξpfar using the analytic solution of the ODE

dξ/dt = K(ξ − ξfar)

for time step ∆t using initial data of ξ = ξout. We used an attenuation coefficient of

K = −.5 in our examples.
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(d) Three implicit solves

Figure 2.4: Numerical results comparing placing the implicit solve either inside each
Runge-Kutta stage (b and d) or once after a full three stage Runge-Kutta cycle (a and
c). The top two figures show the results for a Sod shock tube problem at t = .15s, the
bottom two figures show the results for a strong shock tube problem at t = 2.5×10−6s.
Density is shown in all figures. Note the spurious overshoots when the implicit solve
is not included in the Runge-Kutta cycle (left two figures). Note that we use the
standard ENO scheme from [93] (not MENO) for these four examples.
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Test name semi-implicit (seconds) explicit (seconds)
Sod shock tube 2.95 3.69
Lax shock tube 2.71 4.53
Strong shock tube 2.43 3.43
Mach 3 shock test 2.90 3.59
High Mach flow test 3.75 3.29
Interaction of blast waves (Bang Bang) 5.28 9.86
Two symmetric rarefaction waves 3.52 4.15

Table 2.1: Wall clock times comparing the semi-implicit method with the fully explicit
method, for 1-D examples. Simulations were run to the target times of each example
as mentioned in their respective figures.

Grid Effective ∆t Wall clock time Wall clock time
Resolution sound speed (Implicit) (Explicit)

CFL
3200 3 5.01e-08 63.41s 511.67s
32000 30 5.01e-08 810.03s 60498.49s
320000 300 5.01e-08 9976.58s Impractical

Table 2.2: Timing results for smooth flow test, with ∆t approximately constant. The
wall clock times are shown for simulations till t = 5× 10−5s.
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Figure 2.5: Numerical results of the Sod shock tube problem at t = .15s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.
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Figure 2.6: Numerical results of the Lax’s shock tube problem at t = .12s. The
explicit baseline solution is plotted in red, and the solution from our method is plotted
in dotted green.
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Figure 2.7: Numerical results of the strong shock tube problem at t = 2.5 × 10−6s.
The explicit baseline solution is plotted in red, and the solution from our method is
plotted in dotted green.
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Figure 2.8: Numerical results of the Mach 3 shock tube problem at t = .09s. The
explicit baseline solution is plotted in red, and the solution from our method is plotted
in dotted green.



CHAPTER 2. SEMI-IMPLICIT COMPRESSIBLE FLOW 30

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

(a) Density

 0

 500

 1000

 1500

 2000

 0  0.2  0.4  0.6  0.8  1

(b) Velocity

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07

 0  0.2  0.4  0.6  0.8  1

(c) Pressure

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000

 0  0.2  0.4  0.6  0.8  1

(d) Internal Energy

Figure 2.9: Numerical results of the High Mach shock tube problem at t = 1.75 ×
10−4s. The explicit baseline solution is plotted in red, and the solution from our
method is plotted in dotted green.
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Figure 2.10: Numerical results of the interacting blasts shock tube problem at t =
.038s. The explicit baseline solution is plotted in red, and the solution from our
method is plotted in dotted green.
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Figure 2.11: Numerical results of the symmetric rarefaction shock tube problem at
t = .15s. The explicit baseline solution is plotted in red, and the solution from our
method is plotted in dotted green.
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Figure 2.12: Numerical results comparing the pressure in smooth flow test at 200,
400, 800, 1600, and 3200 grid cells with an effective sound speed based CFL number
3 at t = 1.5 × 10−5s. The red curve is the explicit simulation run at 3200 grid cells
with a CFL number .5.
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Figure 2.13: Numerical results showing pressure in the smooth flow test at 3200,
32000 and 320000 grid cells. We used an effective sound speed based CFL number of
3, 30 and 300 respectively at t = 1.5 × 10−5s. Since ∆t stays constant, the solution
remains relatively unchanged even as we get huge time step gains.
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Figure 2.14: Numerical results showing the contour plots of density for the flow past
a step test on a grid of size 120x40 at t = 4s. 30 contours are plotted in the range
[.2568, 6.067].
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Figure 2.15: Numerical results showing the contour plots of density for the double
mach reflection of a strong shock on a grid of size 240x60 at t = .2s. 30 contours are
plotted within the range [1.731, 20.92].
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Figure 2.16: Numerical results for the circular shock test on a grid of size 100x100 at
t = .25s.



Chapter 3

Compressible FSI

We propose a novel method to implicitly two-way couple Eulerian compressible flow

to volumetric Lagrangian solids. The method works for both deformable and rigid

solids and for arbitrary equations of state. The method exploits the formulation of

[50] which solves compressible fluid in a semi-implicit manner, solving for the advec-

tion part explicitly and then correcting the intermediate state to time tn+1 using an

implicit pressure, obtained by solving a modified Poisson system. Similar to previous

fluid-structure interaction methods, we apply pressure forces to the solid and enforce

a velocity boundary condition on the fluid in order to satisfy a no-slip constraint.

Unlike previous methods, however, we apply these coupled interactions implicitly by

adding the constraint to the pressure system and combining it with any implicit solid

forces in order to obtain a strongly coupled, symmetric indefinite system (similar to

[89], which only handles incompressible flow). We also show that, under a few reason-

able assumptions, this system can be made symmetric positive-definite by following

the methodology of [88]. Because our method handles the fluid-structure interactions

implicitly, we avoid introducing any new time step restrictions and obtain stable re-

sults even for high density-to-mass ratios, where explicit methods struggle or fail. We

exactly conserve momentum and kinetic energy (thermal fluid-structure interactions

are not considered) at the fluid-structure interface, and hence naturally handle highly

non-linear phenomenon such as shocks, contacts and rarefactions.

38
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3.1 Introduction

Direct numerical simulations (DNS) are often used to study the interactions between

fluid flows and solid structural models. Under certain assumptions these can be

reduced to a one-way coupled system; for example if one wishes to determine the

steady-state lift of an airfoil in subsonic flow, it is often reasonable to simulate the

airfoil as a kinematic body. With a clever choice of boundary conditions, one can

even begin to examine two-way coupled interactions, albeit in a limited fashion. In

the more general case, these assumptions miss the interesting two-way coupled inter-

actions between the fluid and the structure. These two-way coupled interactions can

be quite important and, if not properly captured in the DNS, can lead to non-physical

results. It is therefore important to have a robust numerical method that accurately

captures two-way coupled interactions across a fluid-structure interface.

Methods to capture fluid-structure interactions can be broadly separated into two

categories. Weakly coupled (partitioned) systems interleave the disparate subsystems

by integrating them forward in time separately, using each others’ results as bound-

ary conditions in an alternating one-way coupled fashion (see e.g. [112, 84, 21]). This

approach is appealing as it permits the use of specialized numerical methods for each

of the different materials with only slight modifications to account for the modified

time integration and changing boundaries. There are disadvantages to this approach,

however, for example new and poorly understood stability restrictions arise indepen-

dent of the individual subsystems, such as the lumped-mass instability discussed in

[11]. The alternative is to employ a strongly coupled (monolithic) system, which are

systems where the fluid and structure are evolved forward in time simultaneously

using a solver specially crafted to incorporate phenomena from both fluid and solid

phases. Our method is a hybrid of the two; the explicit components of both fluid and

solid solvers are evolved forward independently, while the implicit components and

interactions are coupled together in a monolithic solve.

State-of-the-art solvers typically use an Eulerian framework to treat fluid flows

and a Lagrangian framework to treat solids, and so any coupled system must do

one of three things: model the solid in an Eulerian framework, model the fluid in
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a Lagrangian framework, or find a way to couple Eulerian fluids with Lagrangian

solids. The first two options are undesirable as they impose significant limitations on

the numerical method, for example Eulerian models only capture material properties

(rather than tracking them) which makes it difficult to compute time history vari-

ables important to structural simulation, such as loading and damage. Many fluid

Lagrangian models have difficulty in obtaining the correct shock speeds due to the

lack of discrete flux differencing, and therefore resort to artificial viscosity methods

that require a number of zones within a shock in order to obtain the right speed

[5, 6]. Lagrangian fluid models also struggle with high-speed and deforming flows,

as large deformations can cause significant numerical errors in the flow field and can

drive the time step to zero. This can be partially alleviated by applying complex

and expensive remeshing, but if the flow field tangles and inverts, the simulation can

cease altogether. Arbitrary Lagrange-Eulerian (ALE) methods address the problem

of a deforming Lagrangian fluid grid by permitting the fluid grid to move at some

velocity other than the velocity of the fluid, but this can still lead to high aspect

ratios that necessitate remeshing, especially in the presence of a fluid-structure in-

terface. We address the challenge of coupling Eulerian fluids with Lagrangian solids

by introducing an interpolation operator, which conservatively maps quantities from

Eulerian boundaries to nearby Lagrangian boundary nodes, and vice versa.

At the fluid-structure interface there is a transfer of information. This information

transfer can be handled by weakly coupling each separate subsystem using a one-sided

estimate of the transfer, or by strongly coupling subsystems together and introducing

new variables to the equations. Weakly coupled approaches have been shown to give

high-fidelity results [1, 23, 22], but can struggle when applied to a system with high

density-to-mass ratios (and are prone to going unstable, as we discuss in Section 3.4.3).

These problems can be alleviated by using a better estimate of values at the interface,

as suggested by [60], but this typically involves solving expensive general Riemann

problems at every fluid-structure face. These problems can be avoided entirely by

handling the interface in a strongly coupled fashion, but previous work has been

limited to incompressible flows [82, 89]. Our method exploits the structure of [50],

which treats the pressure flux of compressible flows implicitly. This permits us to
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treat the fluid pressure as an implicit force on the solid, and use an implicit velocity

boundary condition on the Poisson solve, much like previous strongly-coupled work.

Our fluid evolution is comprised of two steps: an advection stage and a pressure

solver phase. This permits us to address the complexities arising from the truly non-

linear components of the flow separately from the linearly degenerate components. In

the pressure phase, we freeze everything to their time tn+1 location and perform an

implicit solve for the fluid pressure and solid velocity. It is in this phase that we handle

the transfer of momentum and kinetic energy across the fluid-structure interface, and

as such it is important to be conservative in transferring information between the

two sets of degrees of freedom. In the advection stage no information should be

transmitted across the interface, but instead we must address the issues which arise

by virtue of a moving solid (i.e. the covering and uncovering of fluid cells). There

are many examples of how to address these problems in the literature, for example

we could track cut cells, re-discretize the fluid in an ALE formulation—all of which

significantly complicate the fluid evolution. Instead we make the key observation that

since the interface is a contact discontinuity we can afford to be non-conservative, but

only in the linearly degenerate components of the flow.

In a traditional explicit method the linearly degenerate and truly non-linear fluxes

aren’t separated, and as such these methods need to deal with all of the complexi-

ties of moving boundaries and information transmission at the same time. That is,

they need to be conservative when dealing with information that crosses the interface

while at the same time dealing with an interface that moves. Finally, the flux needs

to be re-examined carefully in order to determine what forces should be applied to

the interface. One could modify traditional methods by separating the conserved

quantities into their Riemann invariants, and be conservative in the truly non-linear

invariants while allowing the linearly degenerate invariants to be non-conservative

—however this doesn’t address the moving boundary, and still leaves us with the

(poorly-understood) CFL restriction that arises from explicit fluid-structure interac-

tions. Because of these complications, our method hinges on the existence of [50].
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3.2 Semi-implicit compressible flow

We briefly describe the semi-implicit evolution for compressible flow [50] which forms

the basis for our implicit coupling scheme. Consider the multi-dimensional Navier-

Stokes equations, given by:





ρ

ρ#u

E





t

+





∇ · ρ#u
∇ · (ρ#u)#u
∇ · (E#u)



+





0

∇p

∇ · (p#u)



 = f (3.1)

where we have split the flux terms into an advection and non-advection part and

lumped viscous terms into f . The advection part (as well as any body forces) is

integrated explicitly to give intermediate values ρ", (ρ#u)" and E". Since pressure

does not affect the continuity equation, ρn+1 = ρ". The momentum update equation

can be divided by ρn+1 to obtain

#un+1 = #u" −∆t
∇p

ρn+1
, (3.2)

and taking its divergence gives

∇ · #un+1 = ∇ · #u" −∆t∇ ·
(

∇p

ρn+1

)
. (3.3)

In the case of incompressible flow, we would set ∇ · #un+1 = 0, but for compressible

flow we instead use the pressure evolution equation (see e.g. [24]),

pt + #u ·∇p = −ρc2∇ · #u (3.4)

If we fix ∇ · #u to be at time tn+1 through the time step (making an O(∆t) error),

discretize pt+#u ·∇p explicitly using a forward Euler time step (i.e. pn+1−pn

∆t +#un ·∇pn),

and define the advected pressure as pa = pn −∆t(#un ·∇pn) we obtain

pn+1 = pa −∆tρc2∇ · #un+1. (3.5)

Substituting this in Equation (3.3) and rearranging gives
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pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= pa − ρn(c2)n∆t∇ · #u", (3.6)

where we have defined ρc2 at time tn and the pressure p at time tn+1. Discretizing

the gradient and divergence operators yields

[
I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT #̂u", (3.7)

where G is our discretized gradient operator, −GT is our discretized divergence op-

erator, and ρ̂ and û represent variables interpolated to cell faces. This is solved to

obtain pn+1 at cell centers. The time tn+1 pressures are then applied in a flux-based

manner to the intermediate momentum and energy values to obtain time tn+1 quan-

tities in a discretely conservative manner (thereby giving correct shock speeds). This

is done by averaging the pressures to cell faces by pn+1
i+1/2 =

pn+1
i+1 ρn+1

i +pn+1
i ρn+1

i+1

ρn+1
i +ρn+1

i+1
, rewriting

Equation (3.2) using face-averaged quantities ûi+1/2 = û"
i+1/2 − ∆t

Gi+1/2p
n+1

ρ̂i+1/2
(where

ρ̂i+1/2 = (ρi + ρi+1)/2), and updating the values using

(ρ"u)n+1 = (ρ"u)" −∆t

(
pn+1
i+1/2 − pn+1

i−1/2

∆x

)
, En+1 = E" −∆t

(
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x

)
.

(3.8)

3.3 Solid evolution

We give a brief treatment of solid evolution with sufficient detail to properly handle

the fluid-structure interactions. A solid state is completely described by its velocity

and position. We update the position and velocities in a Newmark scheme in which

velocity at time tn+1/2 is used to update the position to time tn+1 in a second order

update. Velocity is then updated from time tn to time tn+1 in a separate step.

We describe below the velocity update for deformable and rigid solids. The same

procedure is used twice, once with a time step of ∆t/2 to obtain V n+1/2 for position

update and then with a time step of ∆t for the final velocity update.

Deformable body formulation: For deformable body evolution we need to handle
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both elastic and damping forces. Damping forces can impose strict time step restric-

tions and are thus treated implicitly. We will describe a method which treats the

elastic forces explicitly and damping forces implicitly although one could also incor-

porate implicit elasticity. The deformable body at a given time t can be described by

a vector of positions of its nodes Xs(t) and a vector of velocities of its nodes Vs(t).

The evolution of velocities can be described by Newton’s second law as

Ms(Vs)t = F (Xs, Vs), (3.9)

where Ms is the mass matrix and F is the vector of all forces acting on the solid

nodes. Discretizing and computing the elastic terms explicitly and damping terms

explicit in position, but implicit in velocity, i.e. F (Xs, Vs) = F (Xn
s , V

n+1
s ), we obtain

MsV
n+1
s = MsV

n
s +∆tF (Xn

s , V
n+1
s ). (3.10)

Using a Taylor series expansion on F yields

MsV
n+1
s = MsV

n
s +∆t(F (Xn

s , V
n
s ) +D(V n+1

s − V n
s )). (3.11)

where D = ∂F
∂Vs

. F (Xn
s , V

n
s ) − DV n

s represents the elastic only (and, if present, any

non-linear damping terms [94]) component of the force and one can write

MsV
n+1
s = MsV

"
s +∆tDV n+1

s , (3.12)

where V "
s denotes the velocity vector updated explicitly with the elastic terms only.

Rigid body formulation: For a rigid body we define the generalized velocity vector

as Vs = (V T
cm,ω

T )T , where Vcm is the velocity of its center of mass and ω is its angular

velocity. The velocity evolution can then be described as

(
Mr 0

0 Ir

)
(Vs)t =

(
f

τ

)
, (3.13)

where Mr is a 3 × 3 diagonal matrix with the rigid body mass in the diagonals, Ir
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is the inertia tensor and f, τ are the net force and torque acting on it. Writing the

mass matrix as Ms and combining f, τ into F , we get a form similar to (3.9) which

can be discretized using forward Euler to obtain

MsV
n+1
s = MsV

n
s +∆tF n = MsV

"
s . (3.14)

Where V "
s denotes the velocity vector updated with the explicit forces. Note that this

is the same as Equation (3.12) except without any damping term. We will therefore

use Equation (3.12) as our general solid update equation below, as it covers both the

rigid and deformable cases.

3.4 Fluid-structure interaction

We solve for the fluid on an Eulerian grid, and the solids on freely deforming La-

grangian meshes. The fluid and structure interact with each other by applying equal

and opposite forces at the interface, satisfying physical boundary conditions (we use

no-slip, no penetration boundary conditions) in the process. Immersed boundary

methods induce extra force variables at the interface and apply a regularization op-

erator to map these forces to fluid faces (see e.g. [97]). They also incorporate an

interpolation operator to map fluid velocity to solid nodes for applying boundary

conditions. We eliminate the extra interface force variables and conservatively map

the fluid pressures directly to solid nodes, and solid velocities to fluid faces using an

interpolation operator.

Figure 3.1 illustrates an example fluid grid which is coupled to a Lagrangian solid

which occupies the upper right-hand corner of the grid. In our model, the fluid

interacts with a voxelized version of the solid and the solid directly sees forces acting

on its nodes. We define an interpolation operator W which maps solid node velocity

to the fluid cell faces, where the rows correspond to fluid faces and the columns to solid

nodes. W can be constructed in a row-by-row fashion: for each row, we identify the

corresponding fluid face and locate the nearby solid nodes. The entry corresponding

to each solid node is populated by a weight proportional to its contribution to the
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(a) Eulerian fluid
grid.

(b) Lagrangian
solid which overlaps
the fluid domain.

(c) Solid voxelized
to fluid faces.

(d) Solid nodes
which contribute to
the rasterized face.

Figure 3.1: A common challenge with FSI problems is one of overlapping grids. We resolve
this issue by voxelizing solid degrees of freedom to the fluid grid using an interpolation
operator denoted by the matrix W . The row corresponding to a fluid face gets contributions
from nearby solid nodes.

fluid face, and then finally the row is normalized to ensure that each row sums to

one, making it an interpolation. This is done in a component-by-component manner,

e.g. the x-component of solid velocity is voxelized to x-axis fluid faces but not y-

or z-axis fluid faces, and so the solid velocity at fluid face i + 1/2 is (WVs)i+1/2.

Since pressure is defined at cell centers, we also introduce an extrapolation operator

B which maps cell-centered pressure to face pressures, as illustrated in Figure 3.2.

These face pressures are then multiplied by the surface area of the cell face to get a

force and distributed back to solid nodes using W T . That is, W maps from solid node

degrees of freedom to cell faces, and W T maps back in the opposite direction. Note

that since the rows of W sum to one, the columns of W T sum to one and therefore

the force felt due to the pressure on the face is fully and conservatively distributed

to the solid node degrees of freedom.

3.4.1 The strongly coupled system

The fluid acts on solid degrees of freedom via pressure along the interface. The

pressure exerts a force given by W TAfBp on the solid degrees of freedom, where Af

is a diagonal matrix whose entries correspond to the areas of fluid-structure faces. We
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B =




0 0
0 0
0 1





Figure 3.2: Operator B maps pressure from cell centers to bordering fluid-structure faces.
In this example there are x-direction faces, of which the one to the far right represents a
rasterized solid face. Therefore B has three rows (one for each vertical face, with the top
and the bottom rows corresponding to the far left and far right vertical faces respectively,
and the middle row corresponding to the middle vertical face), and two columns (one for
each pressure at each cell center). Since the only contribution to the solid is from the second
pressure to the third face, B has the form shown above with a single non-zero element. Note
that (1/dx)BT equals −GT

s , as defined in Figure 3.3(b).

can incorporate these forces into the implicit solid system given by Equation (3.12):

MsV
n+1
s = MsV

"
s +∆tDV n+1

s +∆tW TAfBp. (3.15)

The fluid sees a velocity boundary condition at the fluid-structure interface. To

incorporate this into the fluid equations, we partition the discrete divergence operator

−GT into two components. GT
f operates over fluid-fluid faces, while GT

s is the com-

ponent of the divergence operator which operates on rasterized fluid-structure faces

(as outlined in Figure 3.3), and GT = GT
f +GT

s . We can then set fluid-structure faces

to have implicit Neumann boundary conditions; that is,

#un+1 =





#u" −∆tGfp

ρ̂ at a fluid-fluid face; and

WV n+1
s at a fluid-structure face.

(3.16)

Taking the divergence of the velocity field yields

GT#un+1 = GT
f #u

" −∆tGT
f

1

ρ̂
Gp+GT

s WV n+1
s (3.17)
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Using this modified definition for GT#un+1 in Equation (3.5) and substituting into

Equation (2.5) gives

[
1

∆tρn(cn)2
I +∆tGT

f

G

ρ̂n+1

]
pn+1 −GT

s WV n+1
s =

pa

∆tρc2
+GT

f #u
". (3.18)

If we define V = ∆x∆y∆z to be the volume of the fluid cell, then V GT
s = AfBT .

Combining equations (3.15) and (3.18), using scaled pressure p̃ = ∆tp and scaled

advected pressure p̃a = ∆tpa, and rescaling the fluid equations by cell volume gives

us our symmetric system

(
V

∆t2ρc2 I + V GT
f
1
ρGf −AfBTW

−W TBAf −Ms +∆tD

)(
p̃n+1

V n+1
s

)
=

(
V

∆t2ρc2 p̃
a + V GT

f #u
"

−MsV "
s

)
. (3.19)

It is interesting to note that if we take the incompressibility assumption (i.e. c → ∞)

then this system reduces to one similar to [89].

The system in Equation (3.19) is symmetric but indefinite, and can be solved using

efficient solvers such as Conjugate Residuals [72] to obtain the final time tn+1 solid

velocity and pressure. The solid part of our update is now complete, but we still

need to use the tn+1 pressure to update the fluid momentum and energy (noting that

ρn+1 = ρ" is already done).

3.4.2 Updating fluid momentum and energy

To obtain correct shock speeds we use the flux-based method discussed above, with

modifications to account for fluid-structure faces. At a fluid-structure face i + 1/2,

the fluid applied a force of (BAfp)i+1/2 to the solid. To conserve momentum, fluid

face i+1/2 should apply an equal and opposite force −(BAfp)i+1/2 on fluid cell i. In

our momentum update this is numerically equivalent to setting pi+1/2 = (Bp)i+1/2 at

fluid-structure faces.

Next, we need to consider the work done by the fluid on the solid at a fluid-

structure face. We are applying an impulse ∆t(BAfp)i+1/2 on the solid, which is

equivalent to applying a constant force over the interval ∆t. In order to compute the
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GT
f = 1

dx

[
−1 1 0
0 −1 0

]
GT

s = 1
dx

[
0 0 0
0 0 1

]

Figure 3.3: In our derivation, the divergence operator −GT is split into GT
f (which operates

only on fluid-fluid faces) and GT
s (which operates only on fluid-structure faces). We show

this splitting for a simple two cell example where the right-most face is a fluid-structure
interface. The rows in the above matrices correspond to cells and columns to faces. The left
most face corresponds to the first column of GT

f and only has one non-zero element since
it only borders one fluid cell. The middle face (which corresponds to the second column of
GT

f ) contributes to both fluid cells and hence has two non-zero elements. The third column

of GT
f is zero, as the third face is a fluid-structure face and instead corresponds to GT

s .

Figure (b) depicts GT
s , which is defined as −(1/dx)BT in Figure 3.2.

work done on the solid system by a single force #f in the presence of other forces, we

lump all forces acting on the solid into a vector #F and examine

∫ ∆t

0

#f ·Vs(t)dt =

∫ ∆t

0

#f ·(V n
s +M−1

s
#Ft)dt = ∆t#f ·

[
V n
s +M−1

s
#F
∆t

2

]
= ∆t#f ·

[
V n
s + V n+1

s

2

]
,

(3.20)

where we take advantage of #F and #f being constant over the interval. We are inter-

ested in calculating the work done by a single fluid face on the solid, so if we take

W T
i+1/2 to be the column vector which distributes the pressure from cell face i + 1/2

to the solid node degrees of freedom then #f = W T
i+1/2(BAfp)i+1/2, and the work done

on the solid by this face is exactly

∆t
[
W T

i+1/2(BAfp)i+1/2

]T
[
V n
s + V n+1

s

2

]
= ∆t

[
(BAfp)i+1/2

]
Wi+1/2

[
V n
s + V n+1

s

2

]
.

(3.21)

This, if pi+1/2 is defined to be (Bp)i+1/2 as suggested above in the momentum update,

then we merely need to set #ui+1/2 = (1/2)(W [V n
s + V n+1

s ])i+1/2 in order to obtain a
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flux p#u which exactly conserves the kinetic energy transferred.

3.4.3 Time step restriction

In our method fluid-structure interactions are handled implicitly and thus we avoid

introducing any new time step restrictions. The time step is therefore determined

by the minimum of the time steps imposed by the fluid and the structure. For the

structure update the time step restriction is determined by the elastic part only, as

damping terms are handled implicitly, while our semi-implicit fluid update imposes

a time step restriction dependent only on its bulk velocity. The time step restriction

imposed by the semi-implicit flow formulation in two spatial dimensions is

∆t

2



 |u|max

∆x
+

|v|max

∆y
+

√(
|u|max

∆x
+

|v|max

∆y

)2

+ 4
|px|
ρ∆x

+ 4
|py|
ρ∆y



 ≤ 1, (3.22)

and we refer the interested reader to [50], which motivates this formulation.

We note that the implicit fluid-structure coupling gives stable results even for

very high density-to-mass ratios, where explicit methods struggle even when the CFL

restrictions of both solid and fluid systems are obeyed. We explore this in exam-

ple 3.6.1.

3.5 Unified time integration

We employ a time integration scheme which incorporates fluid evolution into a Newmark-

style solid evolution scheme. The scheme works by computing an intermediate ve-

locity for the solid V n+1/2
s , and applying this in a second order update to get solid

positions at time tn+1. Velocities are then updated from time tn to tn+1 (discarding

intermediate values), and so two linear systems are solved.

In order to compute the intermediate solid velocity V n+1/2
s , we begin by applying

all explicit solid forces to the system, which gives V n+1/2"
s . Explicit body forces

such as gravity and viscosity are also applied to the fluid system, yielding tn+1/2"

fluid quantities. The coupled system (3.19) is solved in order to obtain Xn+1
s =
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Xn
s +∆tV n+1/2

s , and then the entire fluid state and all solid velocities are restored to

their time tn values.

These new positions are then used to compute an effective velocity for the solids,

i.e. (Xn+1
s −Xn

s )/∆t. Using the effective velocity and then the time tn position of the

solid, we fill ghost cells. These ghost cells are used directly in the stencils of high-order

methods, and provide a valid state for which to populate uncovered cells. In order

to compute the ghost cell data at location #xg, we begin by identifying the closest

solid interface point #xI , and reflecting across the interface. Density and pressure are

interpolated to the reflected point 2#xI −#xg from neighboring cells and then copied to

the ghost cell. The surface normal #N at the interface is used to decompose the velocity

at the reflected point #Vr into its normal component VrN = #Vr · #N and its tangential

component #VrT = #Vr−VrN
#N . In order to remain continuous with the effective velocity

of the structure at the interface #VI , VrN is reflected across the interface, and so we

compute VgN = 2 #VI · #N − VrN . Tangential velocity is decoupled from the interface

and thus we can use it directly, giving the final ghost cell velocity #Vg = VgN
#N + #VrT .

Once ghost cells are filled, explicit body forces such as gravity and viscosity are

integrated into the system, and the advection component of flux from Equation (3.1)

is applied using a conservative flux-based method (see [50]. Explicit solid forces are

applied in order to compute V n+1"
s , and then the coupled system (3.19) is solved to

obtain V n+1
s and pn+1. This pressure is applied as per Section 3.4.2 to obtain time

tn+1 fluid quantities.

We also fill the ghost cells inside the solid using time tn+1 data from the fluid and

solid velocities, as described above. Although none of our examples use these ghost

values, if an explicit body force such as viscosity were to be applied, its stencil would

require valid ghost cells to be defined. Note that these are valid as instantaneous

ghost cells, whereas the ghost cells above use the effective solid velocity, which is the

actual motion of the solid through the mesh. Practical experience shows that this

can make a meaningful difference.
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3.6 Examples and validation

In order to compare our results with previous methods, we implement an explicit

coupling scheme which integrates a fully explicit compressible flow evolution with

a Newmark time integration for solids. This explicit method proceeds in a fashion

similar to Section 3.5, except that instead of solving the system (3.19) we simply

fill ghost cells inside the solid once and explicitly evolve the fluid once, while time

tn pressures along the fluid-structure interface are applied to the solid as explicit

forces. This gives us an explicitly coupled time evolution scheme, such as the one

described in [22].

Although one might assume that the implicit solve would cause efficiency bottle-

necks, we observed relatively few Conjugate Residuals iterations per time step. This

is likely due to the strongly diagonally dominant nature of Equation (3.19), and the

good initial guess for pressure provided by the equation of state at time tn. For all of

our one dimensional examples the maximum number of iterations required per time

step was 3. For the two dimensional examples, the rigid body coupling example re-

quired a maximum of 4 iterations, while the deformable coupling example required a

up to 24 iterations per time step.

In all of the examples we consider the fluid is simulated using an ideal gas law,

with γ = 1.4.

3.6.1 One-dimensional validation

We examine several one dimensional fluid-structure interactions to validate our method.

A third order ENO scheme [93] is used along with an advection-based CFL number

of .6. All quantities below are in SI units, with density as kg/m3, pressure in Pa,

lengths in m, spring coefficients in N/m, etc.
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Sod shock coupled with a rigid body

Our first example is a Sod shock interacting with a rigid body, with open boundary

conditions. The initial condition for the fluid is

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.

A rigid body of mass 1 and width .2 starts at rest with its center of mass a distance of .8

from the left of the domain. The domain is of length 2. The rigid body remains at rest

until the shock hits it, at which point it accelerates by virtue of the pressure difference.

The solid body continues to accelerate until it converges to a velocity of .927453,

which is precisely the interfacial velocity of the Sod Riemann problem. Figure 3.4

shows snapshots of the pressure profile at various times through the simulation. For

comparison, results with the explicit method are shown in Figure 3.5. We also do a

convergence analysis of our method in Figure 3.6. The error in the position of the

rigid body is computed at time .9 from the highest resolution grid simulated, which

is 6401 grid cells. The convergence order of the error is estimated as 1.6.

It is interesting to consider this simple problem for a variety of density-to-mass

ratios. Figure 3.7(a) shows the velocity of the rigid body as a function of time for a

range of rigid body masses in the semi-implicit case. Figure 3.7(b) shows this in the

explicit case. We note that the explicit simulation struggles with high density-mass

ratios. In particular it appears as though the rigid body gains too much momentum

in a single time step, causing the fluid on the other side to over-compress, leading to a

very stiff oscillatory system, even though the time step obeyed CFL restrictions. We

show snapshots of the pressure profile of simulations with a light solid of mass .0001,

with semi-implicit and explicit schemes in Figure 3.8 and Figure 3.9, respectively.

Sod shock interacting with a fluid piston

We consider a similar problem, this time with solid wall boundary conditions and a

larger domain, with the initial discontinuity located at distance 1 from the left of the

domain. The rigid body has a mass of 1, width .2 and starts at rest with its center
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Figure 3.4: Semi-implicit simulation of a Sod shock hitting a rigid body of mass 1.
Pressure profile of the fluid is shown at various times through the simulation. The 1-D
rigid body is drawn as a blue line segment at the bottom of the plot, with pressure
inside the solid shown as a linear pressure profile. The simulation was done on a grid
of resolution 1601.
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(d) t = 1

Figure 3.5: Explicit simulation of a Sod shock hitting a rigid body of mass 1. Pressure
profile of the fluid is shown at various times through the simulation. The 1-D rigid
body is drawn as a blue line segment at the bottom of the plot, with pressure inside
the solid shown as a linear pressure profile. The simulation was done on a grid of
resolution 1601.
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Figure 3.6: Position error of the center of mass of a rigid body hit by a Sod shock,
as compared to a high-resolution simulation, at time .9s. We plot the log of the
relative error, as a function of the log of the resolution of the underlying grid. The
convergence rate is 1.6.

of mass at 1.5 from the left of the domain. The domain is of length 3. The shock

imparts momentum to the rigid body which in turn compresses the fluid on its right.

This compressed fluid creates a high pressure region which pushes back on the solid,

in effect creating a “fluid spring.” This causes the rigid body to oscillate, which plots

the position of the center of mass of the rigid solid as a function of time. Figure 3.10

shows snapshots of the pressure profile at various times through the simulation. For

comparison, results with the explicit method are shown in Figure 3.11. We also do a

convergence analysis of our method in Figure 3.12. The error in the position of the

rigid body is computed at time 4s from the highest resolution grid simulated, which

is 6401 grid cells. The convergence order of the error is estimated as 1.03.

Sod shock coupled with a mass-spring system

To conclude the one-dimensional examples, we consider the mass-spring system in-

teracting with a high pressure gas described in [1] in order to provide validation for
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(a) Semi-Implicit. (b) Explicit.

(c) Semi-Implicit symmetric positive-definite formula-
tion.

Figure 3.7: Velocity of a 1-D rigid body hit by a Sod shock, as a function of time.
Simulations were done on a grid of resolution 1601. All simulations were run with a
CFL number of .6, where the explicit simulation CFL is based on |u|±c and the semi-
implicit simulation was run with the CFL condition specified in Equation (3.22). The
explicit simulations grow increasingly unstable as mass tends to zero, giving unusable
results when mass reaches .0001 (these results are shown in Figure 3.9), and crashes
for lighter masses. As mass tends to zero, the momentum absorbed by the solid tends
to zero and the shock passes through the solid relatively unperturbed, and so the flat
line to which solid velocities appear to converge is in fact the post-shock velocity of
the fluid.
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(d) t = 1

Figure 3.8: Semi-implicit simulation of a Sod shock hitting a light solid of mass
.0001. Pressure profile of the fluid is shown at various times through the simulation.
The 1-D rigid body is drawn as a blue line segment at the bottom of the plot. The
simulation was done on a grid of resolution 1601. For this light mass, the post-shock
state remains practically undisturbed as very little momentum transfers to the solid.
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(d) t = 1

Figure 3.9: Explicit simulation of a Sod shock hitting a light solid of mass .0001.
Pressure profile of the fluid is shown at various times through the simulation. The 1-
D rigid body is drawn as a blue line segment at the bottom of the plot. The simulation
was done on a grid of resolution 1601. The CFL number for this simulation is .6, and
we use the standard compressible flow CFL, based on |u| ± c. Despite satisfying a
reasonable CFL time step restriction, a fully explicit simulation generates unstable
results, and even goes unstable and crashes for masses lighter than .0001.
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(d) t = 4

Figure 3.10: Semi-implicit simulation of a piston hit by a Sod shock, with closed-wall
boundary conditions on both sides. Pressure profile of the fluid is shown at various
times through the semi-implicit simulation. The 1-D rigid body is drawn as a blue
line segment at the bottom of the plot, with pressure inside the solid shown as a linear
pressure profile. The simulation was done on a grid of resolution 1601. The shock on
the left pushes the rigid body and compresses the fluid on the right into a small high
pressure pocket against the wall, which in turn pushes the rigid body back to the left.
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(d) t = 4

Figure 3.11: Explicit simulation of a piston hit by a Sod shock, with closed-wall
boundary conditions on both sides. Pressure profile of the fluid is shown at various
times through the explicit simulation. The 1-D rigid body is drawn as a blue line
segment at the bottom of the plot, with pressure inside the solid shown as a linear
pressure profile. The simulation was done on a grid of resolution 1601. The shock on
the left pushes the rigid body and compresses the fluid on the right to a very high
pressure against the wall, which in turn pushes the rigid body back to the left.
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Figure 3.12: Position error of the center of mass of the piston (Section 3.6.1), as
compared to a high-resolution simulation, at time 4s. We plot the log of the relative
error, as a function of the log of the resolution of the underlying grid. The convergence
rate is 1.03.

our approach against an analytic solution. The domain is of length 20, and a spring

is fixed to the right side of the domain which has a rest length of 1, a stiffness of 107,

no damping and a mass of 3. The fluid is given by

(ρ, p, #u) = (4, 106, 0)

An outflow boundary condition is used for the left side of the domain. The spring

starts at rest length and is compressed by the gas. Figure 3.13 shows snapshots of the

pressure profile at various times through the simulation. The position of the moving

end of the spring as a function of time is shown in Figure 3.14(a), and a convergence

analysis in Figure 3.14(b). The error in the position of the free end of the spring is

computed at time .008, and is compared against the analytic solution provided in [1].

The convergence order of the error is estimated as 1.16.
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(d) t = .0045
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(f) t = .01

Figure 3.13: Semi-implicit simulation of a 1-D mass-spring system hit by a Sod shock
wave. Pressure profile of the fluid is shown at various times through the semi-implicit
simulation. The mass-spring system is drawn as a blue line segment at the bottom of
the plot. The simulation was done on a grid of resolution 1601. Note the formation
of a spontaneous shock wave.
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3.6.2 Two-dimensional validation

In this section we validate our method for the multidimensional case, and briefly

describe a symmetric positive-definite reformulation of the Equation (3.19). We con-

sider interactions with both rigid and deformable solids. A second order ENO scheme

was used along with an advection-based CFL number of .6.

Rigid Cylinder lift-off

This example, which is suggested by [19, 27, 1], examines the interaction of a Mach 3

shock with a rigid cylinder initially at rest on the floor of a rectangular channel. The

cylinder is lifted by the shock, due to an asymmetric reflection of the incident wave.

The test domain is 1× .2, with the initial shock front positioned at .08 from the left

boundary and the remaining domain is filled with the gas at pressure 1 and density

1.4. The top and bottom of the domains are rigid walls, the left boundary is fixed

to be the post shock state and an outflow boundary condition is used for the right

boundary. The cylinder has a density of 10.77, a radius of .05 and is initially located

at (.15, .05). Figure 3.15 shows the snapshot of the simulation for a selection of times.

Our results compare favorably to those shown in [1], and converges at a rate of .93.

Deforming cylinder lift-off

This example is similar to the one described above (in Section 3.6.2), except that the

rigid cylinder is replaced by a deformable mass-spring system with 222 triangles, and

edge- and altitude-springs with a stiffness of .3. The density of the sphere is 10.77,

has a radius of .05 and the center of mass is initially located at (.15, .05). Figure 3.16

shows snapshots of the simulation for a selection of times. As the shock front passes

through the deforming body, it dissipates, scatters and is partially absorbed by the

body. The example converges at a rate of .99.

Heavy deforming cylinder lift-off

We next consider a heavy deforming cylinder, in the same setup as described in

Section 3.6.2 and Section 3.6.2 above. In this case, the cylinder matches the cylinder
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from Section 3.6.2, except the density is set to 100. As the body absorbs the shock

wave, it compresses and delays the shock. Some of the shock is reflected, but most of

the shock passes through the cylinder. Figure 3.17 shows snapshots of the simulation

at a selection of times. The example converges at a rate of 1.01.



CHAPTER 3. COMPRESSIBLE FSI 66

(a) Position of the free end of the spring, as a function of time.

(b) Position error for the left-most side of the mass-spring system, as com-
pared to the analytic solution provided in [1], at time .008s. We plot the
log of the relative error, as a function of the log of the resolution of the
underlying grid. The convergence rate is 1.16.

Figure 3.14: 1-D mass-spring system hit by a Sod shock wave.
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(d) Position error of the center of mass of the cylinder hit by
a planar shock, as compared to a high-resolution simulation,
at time t = .15s, with a convergence of .96.

Figure 3.15: Pressure contours for semi-implicit simulation of rigid cylinder lift off
are shown at t = 0, t = .164 and t = .301. The simulation is run with a CFL number
of .6, using the CFL restriction discussed in Equation 3.22.
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(d) Position error of the center of mass of the deformable
cylinder hit by a planar shock, as compared to a high-
resolution simulation, at time t = .15s. We plot the log of
the relative error, as a function of the log of the resolution
of the underlying grid. The convergence rate is .99.

Figure 3.16: Pressure contours for semi-implicit simulation of deformable cylinder lift
off are shown at t = 0, t = .164 and t = .301. The simulation is run with a CFL
number of .6, using the CFL restriction discussed in Equation 3.22.
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(d) Position error of the center of mass of the heavy de-
formable cylinder hit by a planar shock, as compared to a
high-resolution simulation, at time t = .15s. We plot the log
of the relative error, as a function of the log of the resolution
of the underlying grid. The convergence rate is 1.01.

Figure 3.17: Pressure contours for semi-implicit simulation of deformable cylinder lift
off are shown at t = 0, t = .164 and t = .301. The simulation is run with a CFL
number of .6, using the CFL restriction discussed in Equation 3.22.
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Figure 3.18: A planar shock travels down a deformable bladder. Shown are the
velocity field of the fluid in green and the velocities of the deformable nodes in red at
times t = .0001, t = .0002, t = .0003, t = .0004, t = .0005 and t = .0006.
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Shock traveling down a deformable tube

This example is similar to the inflatable bladder examples suggested in [1] and [22]

in which a shock wave travels through a deformable tube causing large deformation

of the walls. Our results are shown in Figure 3.18. We also do a convergence analysis

of our method, with convergence 1.18. The error in the position of a particle on

the deformable tube is computed at time .00049s (which is the approximate time of

maximum deformation of that particle in the highest resolution simulation) from the

highest resolution grid simulated, which is 800×600 grid cells. The convergence order

of the error is estimated as 1.18.

Symmetric positive-definite reformulation

Our numerical method is symmetric, but not positive-definite. Recent developments

in [88] discuss a modification of the implicit coupling methodology for incompressible

flow by separating out the coupling forces as implicit variables λ (similar to immersed

boundary methods), decomposing the symmetric damping force into D = CTC and

solving for V̂s = CV n+1
s . The symmetric positive-definite system they obtain can be

modified for compressible flow in a manner similar to Section 3.4.1 to obtain





V
∆t2ρc2

I + ĜT β−1Ĝ −ĜT β−1KT 0

−Kβ−1Ĝ K(β−1 + WM−1WT )KT KWM−1CT

0 CM−1WTKT I + CM−1CT








p̃

λ

V̂s



 =





V
∆t2ρc2

p̃a + ĜT u"

KWV "
s − Ku"

CV "
s



, (3.23)

where Ĝ and −ĜT are the volume weighted gradient and divergence operators respec-

tively, β is the diagonal matrix of fluid dual cell masses, and KT is the matrix of 1s

and 0s mapping λ to the appropriate fluid velocity scalars (see [88] for more details).

Note that in order to avoid confusion in notation we renamed a few operators. In

particular W and J in [88] correspond to the K and W we use here, respectively.

This system is both symmetric and positive-definite. We demonstrate the viability of

this modified method in another example, where we’ve replaced the implicit coupled

solve with Equation (3.23). Our example is similar to the example in Section 3.6.2

except that the sphere is replaced with a diamond whose major axis is of length .1



CHAPTER 3. COMPRESSIBLE FSI 72

Figure 3.19: A diamond is hit by a planar shock, and then collides with the top of the
channel. Shown are pressure contours at t = 0, t = .04, t = .08, t = .16 and t = .2.
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Figure 3.20: Position error of the center of mass of the diamond hit by a planar
shock, as compared to a high-resolution simulation, at time .15s. We plot the log of
the relative error, as a function of the log of the resolution of the underlying grid.
The convergence rate is .84.

and minor axis is of length .025. The diamond begins rotated by π/4, with a center

of mass at (.15, .04). Snapshots of the resulting simulation are shown in Figure 3.19.

The convergence analysis for this example is shown in Figure 3.20 which estimates

the convergence order of the error as .84.

3.7 Conclusions and future work

We have presented a first order method which implicitly couples compressible flow

with solid bodies with arbitrary constitutive models. We show that this method is

robust, numerically conservative, and avoids the numerical instabilities which compa-

rable explicit methods suffer from in the presence of high density-to-mass ratios. The

same methodology can be applied to reformulate our implicit system into a symmetric

positive-definite system.



CHAPTER 3. COMPRESSIBLE FSI 74

There are several interesting avenues of future work which we wish to explore.

Given the promising results which arise from handling fluid-structure interactions

implicitly, we believe that an alternative approach would split the fluid flux along

Riemann invariants–rather than by pressure–and solve for the Riemann invariant

which interacts with the solid implicitly. Our method also relies on the assumption

that the solid has some thickness where ghost cells can be filled, and we believe that

the method can be made to work for thin shell structures (such as parachutes). Given

the utility of the scheme proposed in [50] in handling fluid-structure interactions, it

becomes imperative to address the issues of that original scheme. In particular,

the implicit component of the method is overly centrally-differenced, which tends to

introduce Gibbs phenomena at shocks. It would be better to add upwind biasing,

although it is unclear how to do so.



Chapter 4

Conservative Advection

Semi-Lagrangian methods have been around for some time, dating back at least to

[14]. Researchers have worked to increase their accuracy, and these schemes have

gained newfound interest with the recent widespread use of adaptive grids where the

CFL-based time step restriction of the smallest cell can be overwhelming. Since these

schemes are based on characteristic tracing and interpolation, they do not readily

lend themselves to a fully conservative implementation. However, we propose a novel

technique that applies a conservative limiter to the typical semi-Lagrangian interpola-

tion step in order to guarantee that the amount of the conservative quantity does not

increase during this advection. In addition, we propose a new second step that for-

ward advects any of the conserved quantity that was not accounted for in the typical

semi-Lagrangian advection. We show that this new scheme can be used to conserve

both mass and momentum for incompressible flows. For incompressible flows, we fur-

ther explore properly conserving kinetic energy during the advection step, but note

that the divergence free projection results in a velocity field which is inconsistent

with conservation of kinetic energy (even for inviscid flows where it should be con-

served). For compressible flows, we rely on a recently proposed splitting technique

that eliminates the acoustic CFL time step restriction via an incompressible-style

pressure solve. Then our new method can be applied to conservatively advect mass,

momentum and total energy in order to exactly conserve these quantities, and remove

the remaining time step restriction based on fluid velocity that the original scheme

75
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still had.

4.1 Introduction

The idea of applying the method of characteristics to advect quantities forward in

time dates back at least as far as [14] and has gained popularity in many areas, such as

atmospheric sciences [95]. Although the simplest schemes trace back along straight

line characteristics and use low order interpolation to estimate the data, one can

trace back arbitrarily high order curved characteristics and use arbitrarily high order

interpolation, see for example [77]. The simplicity of these schemes makes them quite

useful for adaptive grids and other data structures, see for example [18, 66, 65, 96, 39].

Recently, authors have considered using semi-Lagrangian methods as building blocks

in other schemes, for example [44, 45, 17] showed that the second order accurate

BFECC method of [16] can be made unconditionally stable using the first order

accurate semi-Lagrangian method as a building block. In addition, [90] showed that

the original scheme of MacCormack [73] can be made unconditionally stable in a

similar way. A notable feature of the semi-Lagrangian method is that it relieves the

time step restriction. This is part of the reason why it has received such interest from

the atmospheric sciences community [53, 57, 54, 111], as well as the compressible

flow community [55, 87] where the acoustic time step restrictions can be severe. We

refer the reader to a particularly interesting body of work that considers a number of

methods for making semi-Lagrangian schemes conservative, considering one spatial

dimension, multiple spatial dimensions with splitting, multiple spatial dimensions

without splitting, and even obtaining conservation from a non-conservative form [99,

106, 78, 105, 98].

Intuitively, the idea behind a fully conservative semi-Lagrangian scheme is simply

to advect the conserved quantities along characteristic paths in a way that is careful

to respect conservation. Many numerical methods are based on this principle, for

example SPH methods push around chunks of mass, momentum and energy assigned

to particles, and have been used to solve both compressible and incompressible flows,
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including flows with shock waves, see for example [28, 71, 48, 47, 108, 15, 13, 59,

68, 85, 29]. In fact, the idea of pushing around conserved quantities is the basis

for volume of fluid methods, which attempt to conserve volume (see for example

[83, 86, 58, 36, 63, 113]). In addition, ALE methods also push material around using

a moving grid, and some of those methods use a background grid along with a two-

step procedure where the material is first advected forward on a moving grid, and

then remapped or redistributed to the background mesh in a conservative fashion,

see for example [37, 75, 69, 70, 12]. Obviously this idea of pushing around mass in a

conservative way respecting propagational characteristics for the sake of consistency

has received quite a bit of attention.

Notably, our method is quite simple, both conceptually and as far as implementa-

tion is concerned—it requires only a small modification to a standard semi-Lagrangian

scheme and utilizes most of the functionality already present. The standard semi-

Lagrangian method updates the value at a grid point by tracing a possibly curved

characteristic backwards in time to find its point of origin, interpolating the surround-

ing data to that point, and placing the result of the interpolation at the original grid

point. In this manner, a grid point is updated with a linear combination of data from

other points. One can view this as placing some fraction of the data from other grid

points at this point, and then consider what this means from the point of conservation

of this data. Considering the grid as a whole, each grid point traces back some char-

acteristic and obtains some fraction of data stored at other grid points. One can see

that the scheme is not conservative, since certain grid points contribute to multiple

interpolations and the sum of all the weights from that grid point to all the points

where the interpolations were performed can be larger than one. This means that

the data contained at the grid point has been over-depleted, violating conservation.

Similarly, some grid points may not be asked for any of their data at all, or the sum

of the inquisitive weights may be less than one. This also violates conservation, in the

sense that data has been left at that grid point and not advected forward. Of course,

we could simply account for this data by leaving it at that grid point, but then the

scheme would be inconsistent as this data needs to be advected forward. We note

that it is trivial to cure both of these pathologies in the semi-Lagrangian scheme by
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simply ensuring that the sum of the interpolation weights from every point adds to

one, and that any data that wasn’t advected forward is pushed forward in our second

semi-Lagrangian step.

To summarize, we make the following modifications to a standard semi-Lagrangian

method. Each grid point is thought of as a control volume, containing a certain

amount of conserved quantity similar to any other conservation law solver. We trace

back the potentially curved semi-Lagrangian rays in the usual manner, perform the

interpolation in the usual manner, but add the additional step of recording all the

interpolation weights for every grid point so that we may check whether or not they

are equal to one. Our first correction requires sweeping through the grid, identifying

any grid node which has been asked for more information than it contains (i.e. sum

of the weights is greater than one), and subsequently scaling down these weights such

that their sum is exactly equal to one. Then these corrected weights are used in place

of the standard weights in the semi-Lagrangian advection scheme. At this point,

the standard semi-Lagrangian scheme is completed, however as mentioned above, we

have not advected all of the conserved quantity forward in time. Thus, for each

grid point whose weights sum to less than one, we need to advect the remaining

conserved data forward in time for consistency. This is done via a second application

of the semi-Lagrangian method starting at that grid point and tracing a potentially

curved characteristic forward in time, to see where it lands (exactly opposite of the

standard semi-Lagrangian method). The remaining data at that point is placed at its

new location, however this new location will not lie at a grid point but will instead

lie inside some grid cell. We distribute the remaining data to the surrounding grid

points by noting that the transpose of an interpolation operator is a conservative

distribution operator. That is, we simply calculate the interpolation weights at the

new point, just as one would in a standard semi-Lagrangian interpolation, and use

those weights to determine how much of the quantity is distributed to each of the

surrounding points. Notably, the building blocks for the second step already exist in

most implementations, only the tracing of a characteristic and the computation of

interpolation weights are needed in the algorithm.

In this paper, we consider the application of our method to both incompressible



CHAPTER 4. CONSERVATIVE ADVECTION 79

and compressible flow. As far as mass is concerned, treating a variable-density incom-

pressible flow and the density equation in compressible flow requires only straight-

forward application of the method. As far as momentum and energy are concerned,

we take an approach which is similar for both incompressible and compressible flows.

In particular we use the method of [50] in order to solve the compressible flow equa-

tions in a way that requires an advection step followed by a pressure solve similar

to incompressible flow, but which contains an identity term since pressure is based

on the time dependent pressure evolution equation. Thus, both methods consist of a

conservative advection step, followed by an implicit solve for the pressure, and a final

pressure correction step. In the case of incompressible flow, our new semi-Lagrangian

method can be used to exactly conserve the momentum of the fluid, and if the pres-

sure correction is viewed as a flux, then one can conserve momentum in that step as

well. In addition, we show how to account for stationary walls and potentially mov-

ing solid object boundaries. The treatment for compressible flow is similar, except

mass, momentum and energy are conservatively advected with our semi-Lagrangian

scheme before the pressure is solved for and the correction is applied. We show how

to apply the pressure correction in such a way so that both the momentum and total

energy are conserved, especially near solid walls and object boundaries. Finally, we

note that a conservation style equation can be formulated for the kinetic energy of

an incompressible flow. This equation is similar to that for compressible flow, with

total energy replaced by kinetic energy along with the appearance of a source term

for losses due to viscosity. Although our scheme can be used to conservatively advect

kinetic energy, and accounting for the viscous source term is straight-forward, the

pressure projection step is inconsistent with the conservation of kinetic energy and

therefore the resulting divergence-free velocity field disagrees with that predicted by

kinetic energy conservation. We provide some analysis of this along with quantitative

results.
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(a) Cell 5 casts a ray backward, −∆t"u, which
lands between cells 1, 2, 3 and 4. Using a
standard bilinear interpolation scheme, the
weights are calculated to be w15 = .125,
w25 = .375, w35 = .125, w45 = .375.

(b) Cell 5 casts a ray forward, ∆t"u, which
lands between cells 1, 2, 3 and 4. We again
use standard bilinear interpolation, giving
forward-cast weights f51 = .06, f52 = .24,
f53 = .14, f54 = .56.

Figure 4.1: Standard semi-Lagrangian advection schemes cast rays either forward
or backward along characteristic lines in order to determine time tn+1 values at cell
centers. We take advantage of this in our scheme, making use of the computed weights
wij and fij as appropriate. The notation wij and fij denote the contribution that cell
i gives to cell j over a time step.

4.2 Conservative semi-Lagrangian method

We begin by discussing the standard semi-Lagrangian method as applied in the sim-

plest case of a passively advected scalar φ, in a velocity field #u,

φt + #u ·∇φ = 0. (4.1)

Combining this equation with conservation of mass, ρt + ∇ · (ρ#u) = 0, leads to the

conservative form of the same equation:

(ρφ)t +∇ · (φρ#u) = 0. (4.2)

For the sake of exposition, we define φ̂ = ρφ as the conserved quantity; this allows

us to interchangeably talk about φ, the passively advected scalar, and φ̂, the con-

served quantity. For each grid point #xj, the semi-Lagrangian method would trace a

potentially curved characteristic ray backward in time to some position #x, and use an

interpolation kernel to obtain a value of φ̂ at #x. This value is then used as φ̂(#xj, tn+1).

The first order accurate case is illustrated by Figure 4.1(a), where a straight line
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characteristic is traced backward in time from cell 5 to find #x in-between cells 1, 2, 3

and 4. In equation form, this is given by

φ̂(#xj, t
n+1) = φ̂(#x, tn) =

∑

i

wijφ̂(#xi, t
n), (4.3)

where wij are interpolation weights such that #x =
∑

i wij#xi. Dimension-by-dimension

linear interpolation yields a first order method. Notably,
∑

j wij = 1 for any consistent

interpolation operator, regardless of the size of the stencil or order of accuracy.

After updating φ̂ at every grid point, we can then define the total contribution

from cell i to the time tn+1 data as σi =
∑

i wij, noting that this is not expected to

sum to 1 due to numerical truncation errors. In fact, since φ̂ is conserved as shown in

Equation (4.2), in order to exactly conserve data during the semi-Lagrangian update,

σi should be exactly 1. Fixing this is the key idea of our numerical method. This is

accomplished by visiting each donor grid cell i, examining σi, and scaling down the

weights wij to ŵij = wij/σi when σi ≥ 1, which guarantees explicitly that we do not

artificially create φ̂.

Next we treat the cells for which σi < 1. At these cells we apply a second pass of

the standard semi-Lagrangian scheme, casting rays forward, as illustrated for a first

order accurate method in Figure 4.1(b), yielding forward-cast weights fij. Noting that

the transpose of an interpolation operator is a conservative distribution operator, we

use these weights fij to distribute the remaining φ̂, i.e. (1− σi)φ̂i, to the cells j used

to perform the interpolation. This can be seen as incrementing the unclamped wij

weights from the first step by an amount equal to (1−σi)fij, so that the final weights

are ŵij = wij + (1− σi)fij. Our update is then given as

φ̂n+1
j =

∑

i

ŵijφ̂(xi, t
n). (4.4)

At the end of our two applications of the standard semi-Lagrangian steps, we now

have modified weights ŵij to satisfy
∑

i ŵij = 1. That is, every cell on the grid

contributes exactly everything it has at time tn to the time tn+1 solution along the

characteristic lines which pass through the cell.
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To summarize, when σi ≥ 1, we clamp the wij to obtain ŵij = wij/σi; using

these new ŵij weights leads to σi = 1. Otherwise if σi < 1, we forward advect the

non-advected data at each grid point and use it’s placement to calculate the new

weights ŵij which also lead to σi = 1. We note that in the σi ≥ 1 case, one could

also forward advect and interpolate. In this fashion, one would be advecting negative

material to cancel out the excess of positive material that was advected by the first

semi-Lagrangian step. However, when this negative material is place at surrounding

grid nodes using the fij weights, it is possible for the target grid node xj to lose more

of the conserved quantity than it originally had. Thus, for now, we only consider the

method of clamping even though it seems to limit the method to first order accuracy.

4.2.1 Boundary conditions

In the application of our method, we consider a number of different boundary con-

ditions. For open boundaries, inflow and outflow are treated by adding and filling

the appropriate number of ghost cells. For inflow boundary conditions, rays which

extend out of the domain are treated in the standard semi-Lagrangian fashion, and

the amount of material donated from ghost cells to points interior to the domain is

considered to be our inflow. One could modify the inflow scheme to not simply per-

form semi-Lagrangian interpolation but instead conservatively advect the sum of the

ghost cell data, however this requires careful accounting since, as ghost cells, some of

these are not solved for.

Unlike the standard scheme where only interior points need to be updated, our

outflow boundaries require evaluation of ghost nodes in the numerical scheme to

ensure that they withdraw the correct amount of φ̂ from the interior of the grid.

Moreover one needs to ensure that enough ghost cells are updated, such that the

information is correctly withdrawn from the interior of the domain. After clamping,

one also needs to consistently advect data from interior nodes to ghost cells when

σi < 1.

Throughout the paper, we measure our conservation error at time tn using the
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following equation:

Error(tn) = Σφ̂(tn)−
[
Σφ̂(t0) + Σin − Σout

]
, (4.5)

where the first term on the right-hand side represents the current amount of φ̂ on

the grid and the second term represents the initial amount. These should only vary

through inflow and outflow which are represented by the third and fourth terms.

When updating φ̂n+1
i from φ̂n, if a semi-Lagrangian ray reaches back to ghost cells and

pulls information into the domain, then we track that for the Σin term. If information

is transported from the interior of our grid to the ghost cells, we track that for the

Σout term. That is, ŵij’s which contribute to a ghost cell j are accounted for in Σout.

There is rich literature on treating inflow and outflow boundary conditions for fluid

flows, and we imagine that many variations of our method could be designed in such

a way that is consistent with our treatment of the interior of the domain. However,

we found this sufficient for our examples.

Near solid walls and moving object boundaries, one must be careful not to in-

terpolate across or into the wall or object. All rays that are cast are done in a

collision-aware manner, stopping any rays early if they would pass through the in-

terface, similar to the computational geometry approach detailed in the computer

graphics literature (see e.g. [32]). Typically, when performing interpolation as in [32]

we use information from the solid, such as its velocity. However, that would transfer

information from the solid to the fluid, for example, during momentum advection

one would be interpolating momentum from the solid. This is non-physical since

advection should not transport conserved quantities across material interfaces. Any

transmission of momentum from the solid to the fluid should instead occur when con-

sidering the acoustic characteristics, for example when solving for the pressure (which

we consider later). Thus, for our scheme we simply set wij = 0 for any interpolation

point which is not visible. At this point one could consider scaling up the remaining

weights to get interpolation weights such that Σiwij = 1, although we have not ex-

perimented numerically with this option. Finally, in the forward-casting step of the

scheme, in order to guarantee conservation we set fij = 0 if cell j is not visible from
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the interpolation point, and the remaining weights are then scaled up to account for

the missing material.

4.2.2 Interpolation

For our new conservative semi-Lagrangian approach we require an interpolation scheme

to determine the weights. A simple method uses linear weights between the nearest

points as shown in Figure 4.1. While this works rather well for conserving energy

as well as converging to the correct solution, the interpolation error can be reduced

through the use of higher order interpolation. Consider for example quadratic in-

terpolation. If our point of interest x lies between cells i and i + 1, then we have

available two valid quadratic functions: a left-biased one which interpolates across

the range (xi−1, xi, xi+1), and a right-biased one that interpolates across the range

(xi, xi+1, xi+2). The left-biased quadratic produces weights for an interpolated point

x as:

αi−1,L =
x̄(x̄− 1)

2
, αi,L = 1− x̄− x̄(x̄− 1), αi+1,L = x̄+

x̄(x̄− 1)

2

while the right-biased quadratic produces weights for an interpolated point x as:

αi,R = 1− x̄+
x̄(x̄− 1)

2
, αi+1,R = x̄− x̄(x̄− 1), αi+2,R =

x̄(x̄− 1)

2

where x̄ = (x − xi)/∆x. While sufficient for a standard semi-Lagrangian scheme,

these interpolations will produce negative weights on the outlying cells (i− 1 for the

left-biased one, i+2 for the right-biased one) when xi < x < xi+1. To alleviate these

negative weights we instead always zero the weight on the outlying cell and push

the missing contribution inward. That is, for the left-biased polynomial the weights

would be

α̃i−1,L = 0, α̃i,L = 1− x̄− x̄(x̄− 1)

2

[
2− φ̂i−1

φ̂i

]
, α̃i+1,L = x̄+

x̄(x̄− 1)

2
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Similarly, for the right-biased polynomial the weights would be

α̃i,R = 1− x̄+
x̄(x̄− 1)

2
, α̃i+1,R = x̄− x̄(x̄− 1)

2

[
2− φ̂i+2

φ̂i+1

]
, α̃i+2,R = 0.

This preserves the value given by the higher-order interpolation scheme and signifi-

cantly reduces the likelihood of a negative weight. Note that both of the quadratic

interpolations provide a second order correction to a linear interpolation. If we take

both of these interpolation schemes and average them, we get the weights that we use

in the quadratic version of our scheme:

αi = 1− x̄− x̄(x̄− 1)

4

(
1− φ̂i−1

φ̂i

)
, αi+1 = x̄− x̄(x̄− 1)

4

(
1− φ̂i+2

φ̂i+1

)
.

Using these modified weights we can then perform our semi-Lagrangian steps as dis-

cussed earlier. conservative-sl-figures 4.3, 4.4 and 4.5 demonstrate the significant error

improvement by using this interpolation scheme. Note that in these conservative-sl-

figures, using second-order Runge-Kutta to trace characteristic lines gives no numer-

ical differences, as the first order approximation is already exact.

Whereas arbitrarily high order characteristics can be traced using our semi-Lagrangian

scheme, it is this negativity in the interpolation weights which so far has restricted

our method to first order accuracy. Negative weights are not entirely detrimental,

and in fact the quadratic version of our scheme admits that to some lesser degree. If

the sum of all the weights at a grid node is equal to some ε < 0 at a grid node, then

we simply forward-advect 1 + ε amount of material. The problem is that a typical

quadratic interpolation scheme can have rather large positive weights balancing out

rather large negative weights on the side of the interval from which two points are

used, and this seems to lead to difficulties. Our process of merging the weights to

form α̃ from α tends to cancel out these large positive and negative values making the

result more reasonable. Of course one can guarantee that the weights never become

negative by simply using standard multi-linear interpolation.

It may be possible to make a second order accurate scheme using only order
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first order accurate interpolation stencils, as was done in the modified MacCormack

scheme of [90] and the modified BFECC scheme of [17]. Another interesting approach

would be to apply a second order non-conservative correction to a full conservative

first order accurate scheme.

4.2.3 Examples

In order to demonstrate the conservation properties of our scheme, we consider an

advected sine-wave “bump” using a constant velocity field. That is,

φ̂(x, 0) =






1
2

(
1 + sin

(
4π ∗ (x− 3

8)
))

.25 ≤ x ≤ .75

0 else
(4.6)

with u = 1. The problem is discretized over the domain [0, 5], and we solve Equa-

tion (4.2) with a CFL number of .9. In Figure 4.2(a), we show the solution as com-

puted by a standard non-conservative semi-Lagrangian advection, while Figure 4.2(b)

shows the solution computed by our new scheme. As we expect, the solutions of the

two methods agree and both converge to the analytic solution. Figure 4.3 shows a

comparison between using linear and quadratic interpolation in our method. Fig-

ure 4.4 shows the same comparison using a CFL number of 2.9 instead of 0.9. Note

that the errors are much smaller since approximately three times fewer time steps

(and thus interpolations) are needed. In Figure 4.5 we run this simulation three

times longer with a CFL of 2.9 showing errors more commensurate with Figure 4.3

as expected. We also demonstrate the order of convergence in Table 4.1 which shows

that our algorithm gives first order convergence.

Figure 4.6 considers a square wave in the divergent velocity field u = sin(πx/5).

Note the marked difference between the conservative and non-conservative method.

Figure 4.8 shows dramatic loss of conservation in the standard semi-Lagrangian

method as compared to the conservative version which maintains exact value up

to round off error. Figure 4.7 shows a convergence analysis for the two schemes using

a high resolution full conservative ENO method [93] as a ground truth. As is typ-

ical the non-conservative method converges to the wrong solution whereas our new
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(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 4.2: A sine-wave “bump” is advected through a uniform velocity field. Shown
is the solution at time t = 3s. We apply the first order version of both the standard
semi-Lagrangian advection, as well we our proposed conservative semi-Lagrangian
advection scheme.

method converges to the result obtained via ENO. The reason the non-conservative

method converges to the wrong solution in this case is that it solves Equation (4.1)

whereas our method solves Equation (4.2). In comparing these two equations, stan-

dard semi-lagrangian advection is missing the φ̂(∇ · #u) term.

We also consider the Zalesak disc example, discussed in [110]. In this example a

notched disk is advected through a velocity field specified by

u = (π/314)(50− y)

v = (π/314)(x− 50)
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 4.3: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 3s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number .9. Using
a higher-order interpolation scheme gives noticeably reduced error; for example at
∆x = 5/256 the peak error for the linear interpolation scheme is .111, while the
quadratic interpolation scheme has a peak error of .060.
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 4.4: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 3s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As
there are no temporal errors (as any semi-Lagrangian ray exactly captures the char-
acteristic curve), all errors are due to the application of an interpolation scheme. The
larger CFL number permits time steps almost three times larger than those taken for
Figure 4.3, and so the error introduced by the interpolation scheme are significantly
smaller.
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 4.5: Error curve for the advected sine-wave “bump” in a constant velocity
field u = 1 at time t = 9s for linear and quadratic interpolation using our proposed
conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As there
are no temporal errors (as any semi-Lagrangian ray exactly captures the characteristic
curve), all errors are due to the application of an interpolation scheme. As such the
number of interpolations needed decreases as the CFL number increases, and the
error goes down proportionally. If we run the same simulation with a larger CFL
number and a proportionally longer period of time, the errors become similar (see
Figure 4.3).
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(a) t = 0s.

(b) t = 1s.

(c) t = 2s.

(d) t = 3s.

(e) t = 4s.

(f) t = 5s.

Figure 4.6: We consider the evolution of density in a velocity field that is specified by
u(x) = sin

(
π x

5

)
. In such a velocity field, the standard semi-Lagrangian approach fails

to capture the rarefaction and converges to a non-physical solution. This simulation
is run with ∆x = 5/8192.
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Coarse Res Fine Res Convergence Order
128 256 0.9384
256 512 1.2062
512 1024 1.1614
1024 2048 1.1260
2048 4096 0.9938

Table 4.1: Convergence order is computed by taking the log2(ce/fe) where ce is the
error in the coarse resolution simualtion and fe is the error in the fine resoltuion
simulation. The order is averaged over all relevant points.

(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 4.7: A square wave that evolves with a divergent velocity field u = sin
(
π x

5

)
.

Shown is the solution at time t = 3s. We apply the first order version of both
the standard semi-Lagrangian advection, as well as our proposed conservative semi-
Lagrangian advection scheme. In this example, we see the standard semi-Lagrangian
advection scheme converges to the wrong solution.
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Figure 4.8: Shown is the time history of
∑

i ∆xφ̂i for a square wave that is evolved
through a divergent velocity field with u = sin

(
π x

5

)
. Solutions for both the standard

semi-Lagrangian advection scheme and our proposed conservative semi-Lagrangian
advection scheme are shown at high-resolution with ∆x = 5/8192.

Shown in Figure 4.9 is the disk after one rotation, for a variety of resolutions. We

also plot the total mass of the system as a function of time, in Figure 4.10; note

that a standard semi-Lagrangian scheme fails to conserve the mass of the disk. The

conservative semi-Lagrangian scheme conserves the mass of the disk up to roundoff

error.

4.3 Incompressible flow

We model incompressible flow using the viscous Navier-Stokes equations, given by





#ut + #u ·∇#u+ ∇p

ρ = 1
ρ∇ · (µ∇#u)

∇ · #u = 0
(4.7)
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Figure 4.9: After one full rotation of the Zalesak disk [110] using our proposed conser-
vative semi-Lagrangian advection scheme, for a variety of grid resolutions. Shown is
the .5 isocontour for grid resolutions ∆x = 2−7, 2−8, 2−9, 2−10, and 2−11, in addition
to the analytic solution. The mass of the disk is properly conserved using our method
(this is verified in Figure 4.10), while the standard semi-Lagrangian advection scheme
loses significant mass. In this light, our scheme can be thought of as the conservative
advection of a smeared-out Heaviside color function.
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Figure 4.10: Shown is the time history of Σi∆xφ̂i +Σout −Σin for Zalesak Disk with
∆x = 2−7. Time history for the standard semi-Lagrangian advection scheme is shown
in red, while our proposed conservative semi-Lagrangian advection scheme is shown
in green.

where #u is the fluid velocity, p is the pressure and µ is the coefficient of viscosity

(which is taken to be constant). For the sake of illustration, we use a fairly simple

time discretization scheme. First we account for the #u · ∇#u term by advecting #un

forward in time using the incompressible velocity field #un with a semi-Lagrangian

advection scheme, giving an advected velocity #u". This velocity field is projected and

made incompressible by solving

∆t∇ · 1
ρ
∇p = ∇ · #u" (4.8)

to obtain a pressure, which is then applied via:

#u"" = #u" − ∆t

ρ
∇p. (4.9)
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Viscous forces are next implicitly accounted for by solving

#̃un+1 = #u"" +
∆t

ρ
∇ · (µ∇#̃un+1), (4.10)

after which we project the flow field again by solving Equation (4.8) (replacing #u"

with #̃u), and then finally updating the flow field to time tn+1 via

#un+1 = #̃un+1 − ∆t

ρ
∇p. (4.11)

A standard Marker and Cell (MAC, [33]) grid discretization is used, storing fluid

velocity in a component-by-component fashion on cell faces. By treating the viscous

forces implicitly, we alleviate the viscous time step restriction.

4.3.1 Momentum-conserving scheme

In order to derive a completely conservative scheme for the momentum, we reformulate

the incompressible flow equations slightly. First, we multiply Equation (4.7) through

by density, giving the following equations in two spatial dimensions:

ρut + ρuux + ρvuy + px = (µux)x + (µuy)y, (4.12)

ρvt + ρvux + ρvvy + py = (µvx)x + (µvy)y. (4.13)

Next, we make use of conservation of mass, given in two spatial dimensions as ρt +

(ρu)x+(ρv)y = 0, noting that for incompressible flow this is identical to ρt+uρx+vρy =

0. If we combine this with the equations above, we can introduce the momentum Lu =

ρu, Lv = ρv and derive the conservation form of the incompressible flow equations as

(Lu)t + (Luu)x + (Luv)y + px = (µux)x + (µuy)y, (4.14)

(Lv)t + (Lvu)x + (Lvv)y + py = (µvx)x + (µvy)y. (4.15)

For advection we solve (Lu)t + (Luu)x + (Luv)y = 0 for L"
u using our new conser-

vative semi-Lagrangian scheme. Similarly, (Lv)t + (Lvu)x + (Lvv)y = 0 is solved for
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L"
v. This small change in form of the equations yields an advection scheme which is

robust to the numerical viscosity effects typically seen in a semi-Lagrangian advection

solver.

We use the standard pressure update to compute the pressure, where the inter-

mediate velocity field is computed as u" = L"
u/ρ and v" = L"

v/ρ. Equation (4.9) and

(4.12), (4.13), (4.14), (4.15) illustrate that the pressure already acts as a conservative

momentum flux between fluid cells. For fluid cells which lie along the fluid-structure

interface, pressure acts as a momentum flux from the fluid cell faces to the solid,

and vice versa. Thus, after projection we can simply update our x-momentum as

L""
u = ρu"" and y-momentum as L""

v = ρv"", after applying the correction defined in

Equation (4.9) to the velocity field #u".

The viscous terms are treated implicitly by solving ρũn+1−ρũ%%

∆t = (µũn+1
x )x +

(µũn+1
y )y which for constant density and viscosity becomes

L̃n+1
u = L""

u +∆tµ∇2ũn+1, (4.16)

similar to Equation (4.10) above. In order to properly account for momentum transfer

during the viscous stage, we are careful to view this viscosity update in a flux-based

form. That is, µux acts as a momentum flux in between the MAC grid stencil locations

of u values, and µuy acts as a momentum flux in between MAC grid u stencil locations

in the other direction. The same approach is used to update v velocities, using µvx

and µvy as momentum fluxes between MAC grid v stencil locations. This gives

L̃n+1
v = L""

v +∆tµ∇2ṽn+1. (4.17)

These intermediate quantities are again projected by solving Equation (4.8) (replacing

#u" with #̃un+1). The time tn+1 velocity field is computed using Equation (4.11), and

momentum is updated as Ln+1
u = ρun+1 and Ln+1

v = ρvn+1.
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4.3.2 Examples

We consider a cavity with high viscous forces that is driven by a flat, horizontal

velocity profile with magnitude 1m/s on the top boundary of the domain. All walls

in the domain are closed, the computational domain is 1m × 1m with ∆x = .01,

and a driving flow moving at speed 1 m/s. Density is 1, and the viscous forces are

determined by µ = 100 Pa · s. Viscosity causes a vortex to form in the cavity, which

quickly settles to steady-state. The resulting steady-state solutions are shown in

Figure 4.11 for the standard semi-Lagrangian advection scheme and our momentum-

conserving semi-Lagrangian advection scheme. Examining the pressure along the

internal boundary, it is interesting to note that both schemes produce 0 net force

acting on the solid boundary (i.e.
∑

∂Ω pd #A = 0), but the magnitude of the force isn’t

(i.e.
∑

∂Ω |p| += 0), suggesting that we properly capture linear momentum but angular

momentum remains an issue.

Next we consider the simple case of flow past a sphere with closed walls on the

top and bottom of the domain, inflow velocity with magnitude 2 m/s from the left

side of the domain and an open outflow boundary on the right side of the domain

with p = 0. For this example we used a domain of (0, 0) × (2, 1) (in meters), no

viscosity and a grid size defined by ∆x = .01. The solution at time t = 9s is shown

in Figure 4.12, using our proposed momentum-conserving scheme. The results of a

standard semi-Lagrangian scheme are qualitatively (but not quantitatively) similar

as expected.

We also carry out a detailed study of the momentum, for both our scheme and

the standard semi-Lagrangian scheme. The bottom two lines in Figure 4.13 show

the cumulative momentum advected into and out of our of the domain for the semi-

Lagrangian scheme, while the middle two lines show these same quantities for our

momentum-conserving scheme. Since the flow is divergence free, one would generally

expect these lines to be commensurate, however, due to numerical errors in inter-

polation there is some drift, which accumulates as the simulation carries forward.

As pointed out above, the pressure acts as a conservative flux between fluid veloc-

ity degrees of freedom. Along solid wall boundaries, such as the top and bottom

of the domain and around the sphere, the pressure can be scaled by the cell face
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size and ∆t to give an impulse, suggesting that it represents a momentum-preserving

collision between the solid and the fluid. However, since these walls are stationary,

i.e. they have infinite mass, they remove momentum from the flow. If we sum the

momentum lost along the walls we obtain the bottom two lines shown in Figure 4.14

for the semi-Lagrangian scheme and our momentum-conserving scheme respectively.

Momentum is also introduced into the domain via pressure at the inflow boundary

condition, where an upstream pressure profile is used to maintain a constant inflow

velocity. The gains due to inflow are shown in Figure 4.14 for the semi-Lagrangian

method on the top curve, and the second curve from the top is for our momentum-

conserving method. Note that since p = 0 at the outflow boundary, no momentum

is lost. Figure 4.15 shows the result if we sum the previous graphs accounting for all

the momentum advected into and out of the domain as well as the pressure fluxes

at the walls and inflow. The bottom line, which is 0 to numerical roundoff, shows

that our momentum-conserving scheme does indeed conserve momentum during the

semi-Lagrangian advection step (which is the only term not accounted for in the pre-

vious graphs). In contrast, the standard semi-Lagrangian scheme gains momentum

during the advection step. Although we did not compute the momentum gained by

carefully looking at that step, we can accurately compute it by accounting for all the

remaining terms and seeing what is left over.

4.4 Treating kinetic energy

It is interesting to consider incompressible flow from the standpoint of kinetic energy.

Although kinetic energy is not conserved for a viscous fluid, it is conserved for an

inviscid fluid. Moreover, it should be conserved during the semi-Lagrangian advection

stage, even though it typically is not. We begin by deriving the time derivative of

K = 1
2ρ#u · #u as

Kt =
1

2
(ρ#u · #u)t =

1

2
#u · #uρt + ρ#u · #ut

=
1

2
#u · #u (−#u ·∇ρ) + #u · (∇ · τ − ρ#u ·∇#u−∇p) .
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We take advantage of Equation (4.7) from above, and observe that

1

2
(#u · #u)#u ·∇ρ+ ρ#u · (#u ·∇#u) =

1

2
(#u · #u)#u ·∇ρ+

1

2
ρ#u ·∇ [#u · #u]

=
1

2
#u ·∇ [ρ#u · #u] = #u ·∇K

= ∇ · (K#u).

Note that we can freely add in p∇ · #u and K∇ · #u, which are both analytically zero.

This gives time evolution of kinetic energy in conservative form as

Kt +∇ · [(K + p)#u] = #u · (∇ · τ). (4.18)

4.4.1 Advection

We compute and store kinetic energy on horizontal u faces as Ku = 1
2ρu

2, and at

vertical v faces as Kv = 1
2ρv

2, and evolve them forward in time separately as they

only couple together through pressure fluxes, similar to the advection of the velocity

field.

For advection, we solve (Ku)t+(Kuu)x+(Kuv)y = 0 for K"
u and (Kv)t+(Kvu)x+

(Kvv)y = 0 for K"
v , using the time tn velocity field #un. In doing so, we explicitly

conserve the kinetic energy of the system during the advection step, which has the

effect of relieving the artificial viscosity effects typically seen when using a standard

semi-Lagrangian advection scheme.

Once we compute K" advected quantities, we use these kinetic energies to de-

termine the magnitudes of the intermediate fluid velocity field #u". That is, u" =

±
√

2K"
u/ρ and v" = ±

√
2K"

v/ρ. We also advect fluid velocities forward in time (us-

ing either the semi-Lagrangian scheme or the momentum-conserving scheme) and use

the sign of the resulting velocity field to determine the sign of u" and v".

4.4.2 Projection

The modified #u" values are used in Equation (4.8) to compute the fluid pressure.

Unlike the momentum update, where the pressure itself acts as a momentum flux
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and the result of the projection does conserve momentum, for kinetic energy we not

only don’t have good values for the flux p#u in Equation (4.18), but the resulting

post-velocity projection does not have the same kinetic energy as the pre-projected

velocity. Indeed, the change in kinetic energy due to the projection is

∆Ku =
ρ

2

(
(u"")2 − (u")2

)
∆Kv =

ρ

2

(
(v"")2 − (v")2

)

=
ρ

2
(u"" + u") (u"" − u") =

ρ

2
(v"" + v") (v"" − u")

=
ρ

2
(u"" + u")

(
−∆t

ρ
px

)
=

ρ

2
(v"" + v")

(
−∆t

ρ
py

)

= −∆tû (px) . = −∆tv̂ (py) .

where û = u%%+u%

2 and v̂ = v%%+v%

2 , and we use Equation (4.9) to replace (u"" − u")

and (v"" − v") terms respectively. Then ∆Ku and ∆Kv look like ∆tûpx and ∆tv̂py

respectively, overall accounting for the #u · ∇p component of ∇ · (p#u). Analytically

we would expect this to be sufficient in an incompressible flow, as p∇ · #u = 0, but

examining this update from the discrete standpoint we note that ∇ · #̂u = 1
2∇ · #u" +

1
2∇ · #u"" = 1

2∇ · #u" += 0 in general and some kinetic energy is lost. If we examine the

sum of the terms of the update for cell faces i− 1/2 and i+ 1/2,

ûi+1/2
pi+1 − pi

∆x
+ ûi−1/2

pi − pi−1

∆x
,

we can rearrange terms slightly, giving

ûi+1/2pi+1

∆x
− pi

ûi+1/2 − ûi−1/2

∆x
−

ûi−1/2pi−1

∆x
,

where the boxed term, when summed over all spatial dimensions for cell i, gives a

discrete approximation of −p∇ · #̂u. That is, by performing an update using ∆Ku and

∆Kv, we are losing exactly this component of the flux. If we view each individual

component of the boxed term, piui+1/2/∆x, these can be thought of as fluxes between

cell face i + 1/2 and cell center i; then the kinetic energy that has been lost in this

update is precisely the kinetic energy that accumulates to a cell center, rather than
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being fully distributed to our degrees of freedom.

Various strategies can be taken to address this, such as taking the accumulated

cell-centered kinetic energy and distributing it equally to all of the surrounding cell

faces. We plan on looking into this more in future work [51], but for now we accept

the loss of kinetic energy due to projection and incorporate the change in kinetic

energy by simply using ∆Ku and ∆Kv as computed above.

If we consider the pressure at a grid cell i and scale it up by the area of a cell face

and ∆t, we get the impulse p̂i between dual-cells i − 1/2 and i + 1/2. In multiple

spatial dimensions, this impulse couples together the orthogonal directions, involving

every cell face incident to cell i. This impulse exchange can be thought of as a collision

between neighboring dual cells. Along this line of reasoning, it is interesting to note

that while collisions preserve momentum and total energy, they do not conserve kinetic

energy unless the coefficient of restitution is 1. Typically in a collision kinetic energy

is lost, and the collisions in this system—with one exception—are no different. In

the special case where (∇ · #u")i = 0, then the multi-dimensional collision that occurs

at cell i does indeed conserve kinetic energy, and can be thought of as a fully elastic

collision with a coefficient of restitution equal to 1.

For the momentum update, the application of these collision-based impulses can

be done in any order; that is, we can freely iterate over impulses, updating the

momentum by applying impulses in a Gauss-Seidel manner. This is not the case for

the energy update, as the application of one impulse changes the energy updated by

all subsequent impulses due to the cross-terms which arise. If we let ρ = m
∆x∆y , then

the update takes the form

ûnew = ûold +
p̂i
m
, (4.19)

where p̂i is the impulse defined above. If we consider the change in kinetic energy
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after these updates,

∆KE =
1

2
m(ûnewer)2 − 1

2
m(ûold)2

=
1

2
m

[(
ûold +

p̂i
m

− p̂i+1

m

)2

− (ûold)2
]

=
1

2
m

[
(ûold)2 + ûold

(
p̂i
m

− p̂i+1

m

)
+

(
p̂i
m

− p̂i+1

m

)2

− (ûold)2
]

= ûold

(
p̂i − p̂i+1

2

)
+

1

2m

(
p̂2i + p̂2i+1

)
− p̂ip̂i+1

m
,

then the boxed term is the cross-term which arises from the sequential application of

impulse updates to the fluid volume. Note that the result is the same regardless of

which impulse p̂i or p̂i+1 is applied first. However, one might misconstrue the gain

in kinetic energy due to each impulse depending on the order in which they were

applied.

4.4.3 Viscosity

After the projection in Equation (4.9) we compute the viscous forces via Equa-

tion (4.10) and then compute the kinetic energy as seen by the fluid velocity field:

∆K =
ρ

2

(
(ũn+1)2 − (u"")2

)

=
ρ

2

(
u"" + ũn+1

) (
ũn+1 − u""

)

=
ρ

2

(
u"" + ũn+1

)(∆t

ρ
∇ · (µ∇u"")

)

= ∆tũ∇ · (µ∇u"") ,

where ũ = u%%+ũn+1

2 and we use Equation (4.10) to eliminate the (ũn+1 − u"") term.

This gives us K"" = K̃n+1 + ∆K, the loss of kinetic energy due to viscous effects

(noting in the case of inviscid flow that ∆K = 0 and K"" = K̃n+1 = Kn+1). Once

K"" is computed, it is projected again as discussed above.
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4.4.4 Examples

We first reconsider the driven cavity case from Section 4.3.2 using our kinetic energy-

conserving semi-Lagrangian advection scheme. For this simple case, we do not at-

tempt to correct for the kinetic energy losses due to the inelastic collisions dictated by

the p̂ discussed above. That is, kinetic energy is lost during the projection step, even

though we know how much is lost to each cell center, as adding this kinetic energy

back into the flow field would lead to a divergent velocity field. The simple case of

the driven cavity is shown in Figure 4.11, showing that the kinetic energy-conserving

scheme compares well with the other two schemes. Unfortunately, for more interesting

cases such as the one shown in Figure 4.12, the inability to create a divergence-free

velocity field that is consistent with the kinetic energy posses an issue, and the results

are qualitatively different.

In spite of that we carry out an analysis for the momentum and kinetic energy in

all three schemes: the original semi-Lagrangian scheme, the momentum-conserving

scheme, and the kinetic energy-conserving advection scheme, which correctly con-

serves kinetic energy during advection but fails to account for kinetic energy loses

during projection. The reason for this quantitative analysis is to illustrate where the

kinetic energy goes, in each of these schemes. We begin by considering the momen-

tum. The top two lines in Figure 4.13 represent the momentum advected into and out

of the domain across the inflow and outflow for the kinetic energy-conserving scheme.

The middle two lines in Figure 4.14 account for the momentum fluxing through solid

wall boundaries due to pressure, as well as the pressure flux at the inflow of the do-

main. For Figure 4.15, the top line is the sum that represents the momentum loss

during advection. Note that this is rather large when compared to the other two

schemes, in part because the advected velocity is not consistent with kinetic energy.

Finally, we consider the kinetic energy transfer of all three schemes. Figure 4.16

shows the kinetic energy advected into and out of the domain across inflow and outflow

boundaries. Figure 4.17 shows the energy gained due to the pressure interacting with

both the solid wall boundaries and pressure flux at the inflow boundary. Note that

in this case the pressure acts as a collision between a fluid cell and a solid wall

boundary, and that collisions influence both the momentum and the kinetic energy.
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Similar collisions happen at the inflow, where kinematically moving ghost cells collide

with our fluid domain. A new term that we didn’t consider for the momentum is the

loss of kinetic energy during projection, where fluid cells collide with each other in a

partially elastic way, losing kinetic energy; these loses are shown in Figure 4.18 for

each of the three schemes. Figure 4.19 shows the sum of all these terms discussed,

leaving only losses which occur during the advection stage of our schemes. Note that

our kinetic energy-conserving advection scheme does indeed conserve kinetic energy

during advection, whereas both the standard semi-Lagrangian scheme as well as the

momentum-conserving scheme lose kinetic energy in this step.

4.5 Compressible flow

We model compressible flow using the inviscid Euler equations,





ρ

ρ#u

E





t

+





∇ · [ρ#u]
∇ · [ρ#u⊗ #u] +∇p

∇ · [(E + p)#u]



 = 0, (4.20)

where ρ is the fluid density, ρ#u is the momentum, E = ρe+ 1
2ρ#u ·#u is the total energy

per unit volume and e is the internal energy per unit mass. These are solved using

the splitting proposed in [50]. Defining the state vector as #U = (ρ, ρ#u,E)T , the flux

is split into its advective component, F1(#U), and acoustic component F2(#U):

F1(#U) =





∇ · [ρ#u]
∇ · [ρ#u⊗ #u]

∇ · [E#u]



 , F2(#U) =





0

∇p

∇ · [p#u]



 . (4.21)

The method first computes F1(#U) explicitly with the MENO advection scheme,

which uses density-averaged velocities at cell faces, advecting the state variables to



CHAPTER 4. CONSERVATIVE ADVECTION 106

an intermediate state #U". That is,

ρ" = ρn −∆t∇ · (ρ#u)

ρ#u" = ρ#un −∆t∇ · [ρ#u⊗ #u]

E" = En −∆t∇ · (E#u).

Note that ρ" = ρn+1, as the first term in F2(#U) is zero. Next, we examine the

remaining component of the momentum equation,

ρn+1#un+1 − ρn+1#u" = −∆t∇p.

We divide through by ρn+1 and take its divergence, yielding an implicit equation for

pressure:

∇ · #un+1 −∇ · #u" = −∆t∇ · 1

ρn+1
∇p. (4.22)

In order to remain conservative, we discretize ∇ · #u" by computing #u" at faces. That

is, we compute ∇ · #u" = −GT #̂u", where −GT is the discretized divergence operator

and #̂u" are #u" velocities averaged to faces. Then we next eliminate the ∇ · #un+1 term

by considering the pressure evolution equation (see [24]):

pt + #u ·∇p+ ρc2∇ · #u = 0. (4.23)

This is discretized as pn+1 = pa−∆tρn(cn)2∇·#un+1, where pa is an advected pn pressure

using the #un velocity field. Plugging this into (4.22), discretizing the gradient ∇ as

G and the divergence ∇· as −GT gives the following implicit pressure equation:

[
I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT #̂u". (4.24)

where ρ̂n+1 are densities averaged to cell faces.

Finally these pressures are applied to the #U" state to get time tn+1 quantities.

Since pressure values and momentum quantities are collocated, we average pressures

to faces as pn+1
i+1/2 =

pn+1
i+1 ρn+1

i +pn+1
i ρn+1

i+1

ρn+1
i +ρn+1

i+1
, permitting us to evaluate ∇p for the momentum
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update in a flux-based manner. We also want to evaluate p#u at cell faces in order

to numerically conserve total energy, and so we update the #̂u" velocities from Equa-

tion (4.22) as #̂un+1 = #̂u" − ∆t Gpn+1

(ρi+ρi+1)/2
. This permits us to write the numerically

conservative flux-based update as

(ρ#u)n+1 = (ρ#u)"−∆t

(
pn+1
i+1/2 − pn+1

i−1/2

∆x

)
, En+1 = E"−∆t

(
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x

)
.

(4.25)

In order to demonstrate our new conservative semi-Lagrangian advection, we use

it to replace the MENO advection scheme when solving F1(#U). Notably the method

of [50] was able to stably compute the solutions of compressible flow ignoring the CFL

restriction due to the acoustic wave because of the implicit treatment of pressure in

Equation (4.24). However, they were still limited by a CFL restriction based on the

fluid velocity. Using our unconditionally stable advection scheme, we are no longer

restricted to a fluid velocity-based CFL.

4.5.1 Example

We solve the classic one-dimensional Sod shock tube [102] using the advection-based

CFL condition given by

∆t

2

(
|u|max

∆x
+

√
|u|2max

∆x2
+ 4

|px|
ρ∆x

)
≤ 1.

as defined in [50]. The Sod shock tube takes as initial conditions

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.
(4.26)

This example is solved on a computational domain of x ∈ (0, 1), with ∆x = 2.5×10−3.

We compare the results of an approach using MENO and a CFL number of .9 with

the results of an approach using our conservative semi-Lagrangian advection scheme

with a CFL number of 3. To illustrate convergence, we show a plot of density at
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time t = .15s for a selection of grid resolutions in Figure 4.20, where conservative

semi-Lagrangian advection is used with the semi-implicit compressible flow solver

with a CFL number of .5. Figure 4.21 shows convergence when a CFL number of 3

is used. We show the same quantities for t = .8s in conservative-sl-figures 4.23 and

4.24. Each figure also shows the resulting solution when solved using a traditional,

fully explicit compressible flow solver with 3rd order accuracy in time and space, for

comparison. We stress that the over-shoots near the shock front are a consequence

of the semi-implicit discretization of the equations discussed in [50], as the implicit

pressure system is centrally biased; to illustrate this point, we show in Figure 4.22

the results generated when a third order MENO advection scheme is used instead,

which suffers from these same overshoots.

Currently, in the context of compressible flows, we are working to extend our

method in a fashion that hybridizes it with a flux-based scheme such as that of [93].

The goal here would be to apply high order accurate flux-based discretization in most

of the domain (albeit with a restrictive CFL condition), yet apply our method near

moving solid boundaries and especially thin shells, see [30].

4.6 Conclusion

We have presented a conservative, unconditionally stable semi-Lagrangian advection

scheme. The method is built from simple, first order semi-Lagrangian building blocks.

We show that the method is beneficial in the simulation of both incompressible and

compressible flows.
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(a) Standard semi-Lagrangian scheme. (b) Momentum-conserving scheme.

(c) Kinetic energy-conserving scheme.

Figure 4.11: Streamlines for the driven cavity example using standard semi-
Lagrangian advection, our proposed momentum-converging method, and our pro-
posed kinetic energy-conserving method. All simulations are run with ∆x = 2−7.
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Figure 4.12: Stream-line visualization of flow past a sphere.
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Figure 4.13: Total momentum fluxing into the computational domain and total mo-
mentum fluxing out of the computational domain, plotted as a function of time for a
standard semi-Lagrangian scheme and our proposed momentum-conserving scheme.
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Figure 4.14: Pressure momentum flux into solid wall boundaries, and pressure mo-
mentum flux entering the computational domain from the inflow boundary condition,
plotted as a function of time for a standard semi-Lagrangian scheme and our proposed
momentum-conserving scheme.
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Figure 4.15: Sum total of momentum in the domain, plus momentum fluxed out of
the domain (through outflow and solid wall boundaries), minus momentum fluxed
into the domain (through inflow), plotted as a function of time for a standard semi-
Lagrangian scheme and our proposed momentum-conserving scheme.
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Figure 4.16: Total kinetic energy fluxing into the computational domain and total
kinetic energy fluxing out of the computational domain, plotted as a function of time
for a standard semi-Lagrangian scheme, our proposed momentum-conserving scheme,
and our proposed kinetic energy-conserving scheme.
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Figure 4.17: Energy flux into solid wall boundaries, and energy flux entering the
computational domain from the inflow boundary condition, plotted as a function of
time for a standard semi-Lagrangian scheme, our proposed momentum-conserving
scheme, and our proposed kinetic energy-conserving scheme.
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Figure 4.18: Change in kinetic energy due to the pressure projection step away from
boundaries, plotted as a function of time for a standard semi-Lagrangian scheme, our
proposed momentum-conserving scheme, and our proposed kinetic energy-conserving
scheme. Note that in all three schemes the change in momentum due to the pressure
projection step away from boundaries is zero.
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Figure 4.19: Sum total of kinetic energy in the domain, plus kinetic energy fluxed
out of the domain (through outflow and solid wall boundaries), minus kinetic en-
ergy fluxed into the domain (through inflow), plus kinetic energy lost in the projec-
tion step away from boundaries, plotted as a function of time for a standard semi-
Lagrangian scheme, our proposed momentum-conserving scheme, and our proposed
kinetic energy-conserving scheme.
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Figure 4.20: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [50], using our new conservative semi-Lagrangian scheme and a
CFL number of .5. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.
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Figure 4.21: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [50], using our new conservative semi-Lagrangian scheme and a
CFL number of 3. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.
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Figure 4.22: Density profile of a SOD shock tube at t = .15s, as generated by the
scheme detailed in [50], using a third order MENO advection scheme and a CFL
number of .5. We zoom in to the box [.725, .775]× [.1, .3], showing the shock front in
greater detail and highlighting convergence at the discontinuity.
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Figure 4.23: Density profile of a SOD shock tube at t = .8s, as generated by the
scheme detailed in [50], using our new conservative semi-Lagrangian scheme and a
CFL number of .5. In order to capture this later time, we extend the computational
domain to x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence.
We zoom in to the box [1.812, 1.932]×[.1, .3], showing the shock front in greater detail
and highlighting convergence at the discontinuity.
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Figure 4.24: Density profile of a SOD shock tube at t = .8s, as generated by the
scheme detailed in [50], using our new conservative semi-Lagrangian scheme and a
CFL number of 3. In order to capture this later time, we extend the computational
domain to x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence.
We zoom in to the box [1.812, .932]× [.1, .3], showing the shock front in greater detail
and highlighting convergence at the discontinuity.



Chapter 5

Thin-shell Conservative FSI

We propose a novel high resolution conservative advection scheme that is suitable

for thin, embedded moving solid structures. The scheme works by coupling together

a high order flux-based method with a conservative semi-Lagrangian solver that is

similar in spirit to that of [52], but modified to treat the cut cells and partial volumes

that arise near a thin solid structure. The conservative semi-Lagrangian scheme is

unconditionally stable, and so unlike previous methods no cell merging is required to

compensate for the small cell volumes that arise. Furthermore, as the semi-Lagrangian

scheme works via tracing characteristic curves, no special treatment is required either

to enforce non-penetration through thin, moving solid structures, or to populate swept

or uncovered degrees of freedom. For the flux-based solver, we use finite-difference

ENO with Lax-Friedrich’s diffusion (although any flux-based scheme works), and in

doing so we found that a modification to the diffusion calculation leads to improved

stability in its third order accurate variant. We integrate this novel hybrid advection

scheme into a semi-implicit compressible flow solver, and modify the implicit pressure

solver to work with cells of variable size. In addition, we propose an improvement to

the semi-implicit compressible flow solver via a new method for computing a post-

advected pressure. Finally, this hybrid conservative advection scheme is integrated

into a semi-implicit fluid-structure solver, and a number of one-dimensional and two-

dimensional examples are considered—in particular, showing that we can handle thin

solid structures moving through the grid in a fully conservative manner, preventing

123
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fluid from leaking from one side of the structure to the other and without the need

for cell merging or other special treatment of cut cells and partial volumes.

5.1 Introduction

The Direct Numerical Simulation (DNS) of fluid-structure interactions has recently

received significant attention. Many of these works concern themselves with fluid flow

in the incompressible flow regime, see for example [10, 46] and the references within,

but researchers are increasingly giving attention to the two-way coupled interactions

that arise in compressible flows, see for example [4, 35, 20]. If one desires to use a

state-of-the-art Eulerian method on the fluid flow, and a state-of-the-art Lagrangian

method for the structure solver, then this requires a numerical method for coupling

these two solvers together. Fluid-based forces need to be transferred to the solid

structure, and position and velocity-based boundary conditions must be applied to

the fluid based on the current location and movement of the solid structure. One of the

primary research areas in solid-fluid coupling concerns the stability of the numerical

methods for coupling and is essentially focused on the feedback loop where pressure

is applied to the solid, the solid structure reacts and deforms, and subsequently

imposes position and velocity-based boundary conditions on the fluid. While the most

straightforward approach is simply to treat the coupling in an explicit way, called a

partitioned method [112, 84, 21], researchers have focused quite a bit of attention on

so-called monolithic methods that employ higher degrees of implicit coupling [88, 31],

in order to stabilize parts or all of this feedback loop. Another important issue regards

the modifications that the Eulerian method requires to treat cells cut by the solid

structure as well as those that are covered or uncovered as the structure sweeps across

the Eulerian grid—especially in regards to stability and conservation. A common

approach for treating these issues on the Eulerian grid is to fill the cells that are

covered or partially covered by the solid structure with ghost values of some type,

and then proceed in the standard way ignoring the solid all-together. This alleviates

stability restrictions for cut cells, automatically creates new fluid in uncovered cells,

and has been theme of the approach for the ghost fluid method [23] and the immersed
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boundary method (see [82] and the references therein, including [80, 81]). The fluid

placed in these ghost cells must include the added mass effect of the solid, i.e. if the

solid is heavier or lighter than the surrounding fluid, the ghost cells must properly

represent that mass difference. The added mass can be accounted for in thin solid

structures as well (see for example [114]), simply by adding that mass to the fluid

cells that contain the solid structure. Whereas ghost cell methods overcome stability

restrictions for cut cells, they do not maintain either conservation nor the ability for

the fluid on one side of the structure to remain on that side, i.e. the fluid can leak

across to the other side of the structure. In order to address these concerns, authors

have focused on cut cell methods, see for example [34, 35] and the references therein.

The main issue with these methods is in the treatment of small cell volumes, which can

impose additional time step restrictions on the flow solver if special techniques such as

cell merging near the structure interface are not used. Furthermore these methods can

become extremely complex if the solid structure is sweeping across the grid. In fact,

most approaches to treating covering and uncovering of cells are non-conservative,

and even then there can be issues [91]. Generally speaking uncovered cells need to be

replaced with a valid value, and one can do this with any number of methods that

range from simply interpolating from nearby neighbors to using upwind information

to populate these cells, see for example [61, 56, 100]. Our semi-Lagrangian approach

also uses upwind information to fill uncovered cells, but with the aide of [52] more

readily lends itself to a fully conservative approach than does a flux-based method.

We propose a novel treatment for cut cells and partial cell volumes near the

structure interface. Unlike previous methods, this approach does not rely on cell

merging to alleviate the time step restriction; instead we employ a conservative semi-

Lagrangian scheme, similar in spirit to [52]. We make two major modifications to

this method. First, the method is modified to support non-uniform grids, noting that

care must be taken when a characteristic emanating from a large grid cell lands in the

midsts of many small grid cells, and vice versa. Second, since the semi-Lagrangian

method is low order accurate, we hybridize it with a high order accurate flux-based

ENO method [93] (although any flux-based scheme works) so that high resolution can

be obtained throughout the flow with the semi-Lagrangian method only being applied
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near the thin solid interface. As the semi-Lagrangian solver works by tracing along

characteristic curves, we can use continuous collision-detection [9, 32] to guarantee

that fluid does not penetrate into a volumetric solid or cross over from one side to the

other on a thin solid. This works even when the solid is moving and is under-resolved

by the grid. Notably, the resulting method requires no special treatment for swept or

uncovered cells.

Using the semi-Lagrangian method to handle cells near the structure interface is

similar in spirit to both volume of fluid (VOF) [38] and arbitrary Lagrange-Eulerian

(ALE) [37] methods, which both explicitly move information along characteristics

in a Lagrangian manner and both explicitly conserve the material. Although some

versions of the volume of fluid scheme intersect flux-swept volumes with the volume

fraction, others actually mesh up the volume fraction and move it through the grid

in a Lagrangian fashion. If one treats each vertex of the meshed-up VOF polygon

as a Lagrangian particle, continuous collision-detection can be applied to it in the

same fashion as we do for our semi-Lagrangian rays. In this manner one can achieve

conservation, stability and also prevent material from interpenetrating volumetric

solids or crossing over thin solids. Afterwards, this advected polygon of volume needs

to be deposited and stored on the grid so that it can be remeshed into the VOF

representation at the next time step. The issue here comes in the representation;

that is, if a cell is cut by a thin structure one needs to represent that volume fraction

on the grid in a way that does not cross over the structure. The semi-Lagrangian

method stores information at grid points (cell centers in our implementation) and

therefore overcomes this, but a volume of fluid method would need to reconstruct the

geometry in such a way that cuts the cells across the interface designated by the solid

boundary. Similarly ALE methods push along the vertices of their mesh in a manner

similar to both the VOF and semi-Lagrangian methods, and thus those vertices can

be collided with the structure. Again, one of the more complex aspects of this is

in keeping the structure for the ALE mesh commensurate with the solid structure

interface. Moreover, another issue with the ALE method is that pushing nodes around

in a Lagrangian fashion and colliding them with the structure interface can result in

inversion, and unless one wants to untangle the ALE mesh [101] and attempt to fit it
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to the solid structure, a remapping method needs to be employed where the material is

dropped back down onto some Eulerian mesh and then remeshed in a way that fits the

structure. In general we believe that both VOF and ALE methods could be applied in

a manner similar to what we propose for our method, as long as one could work out the

details for hybridization with the flux-based scheme and for redepositing the material

near the solid interface onto an Eulerian grid. However, we feel that the conservative

semi-Lagrangian approach of [52] is a very simple and straight-forward way to do

this. We refer the interested reader to the following relevant VOF [36, 76, 2, 3, 64]

and ALE papers [49, 70, 69, 74, 75, 7].

In order to capture the fluid-structure interactions we employ the flux-split com-

pressible coupling methodology of [31], where the fluid flux terms are split into ad-

vective terms and pressure terms. The linearly degenerate advective terms are solved

independently of the structure after which an implicit, monolithic coupled system

is solved for the fluid pressures, the fluid-structure impulses and the structure ve-

locity degrees of freedom. By treating the interactions implicitly, no new time step

restrictions arise as a result of high density-to-mass ratios and we are free to work

both with infinitesimally light structures as well as extremely heavy ones. We make

two modifications to this method. The first modification addresses the fact that the

original paper used a rasterized version of the solid structure, and so each grid cell is

either completely full or completely empty of fluid. Second, we propose some modifi-

cations to the flux-splitting method of [50] that are primarily concerned with a better

computation of what they refer to as the advected pressure.

The remainder of this paper is organized as follows; in Section 2 the conservative

semi-Lagrangian advection scheme of [52] is extended to work with arbitrarily-sized

control volumes, and then coupled together with a high order accurate flux-based

solver in order to obtain a high resolution hybrid conservative advection scheme.

Section 3 incorporates this hybrid conservative advection scheme together with the

flux-split Eulerian flow solver of [50], makes note of a few algorithmic modifications

that lead to better performance at a reduced computational cost, and alters the im-

plicit pressure solve to account for non-uniformly sized control volumes. Section 4

couples together this Eulerian flow solver with the implicit fluid-structure interaction



CHAPTER 5. THIN-SHELL CONSERVATIVE FSI 128

solver of [31], demonstrating how the hybrid advection flow solver can be used to treat

cut cells and partial volumes. This section also covers how the volumetric conservative

semi-Lagrangian advection scheme is modified to both guarantee collision-free advec-

tion near thin, moving solid structures, as well as maintain high resolution temporal

accuracy in the flux-based region of the flow field. In Section 5 we demonstrate the re-

sulting two-way coupled method for a variety of one-dimensional and two-dimensional

examples.
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5.2 Conservative semi-Lagrangian advection

We begin with a short review of [52] to lay the groundwork for conservative semi-

Lagrangian advection before proposing our novel extension to non-uniform grids in

Section 5.2.1, and then hybridizing the resulting method with a traditional flux-based

method in Section 5.2.3. A traditional semi-Lagrangian scheme approximates

φt + #u ·∇φ = 0, (5.1)

where φ is some passively advected scalar through a velocity field #u, by looking

backward to a sample point x− along characteristic lines and then interpolating to

this sample point from nearby grid points. This can be written as

φn+1
j = φ

(
xj, t

n+1
)
= φ

(
x−
j , t

n
)
=
∑

i

wijφ (xi, t
n) (5.2)

where wij are interpolation weights from some neighborhood of cells located at xi to

the sample point x−
j (that is, x−

j =
∑

i wijxi). A first order accurate approximation

may for example compute x−
j = xj−∆t#un

j , and then use bi-linear (or tri-linear, in three

spatial dimensions) interpolation to compute φ
(
x−
j , t

n
)
; never explicitly computing

wij.

In [52] this scheme is modified to instead solve the conservative form,

φ̂t +∇ · (φ̂#u) = 0, (5.3)

which can be derived by multiplying Equation (5.1) through by conservation of mass

and setting φ̂ = ρφ (where ρ is density). They define σi =
∑

j wij to be the fractional

contribution that the time tn data in cell i gives to the time tn+1 solution, and note

that in order to remain conservative it is this term—rather than the sum over i—that

should equal to one. That is, a given cell i must contribute all of its time tn data to

the time tn+1 solution; no more, and no less.

In order to strictly enforce conservation while remaining consistent with Equa-

tion (5.3), [52] computes modified weights ŵij such that
∑

j ŵij = 1 for all cells
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i. This is done in three stages, beginning with a traditional semi-Lagrangian step.

Rather than implicitly computing wij by way of computing φ
(
x−
j , t

n
)
, however, these

weights are computed directly and saved. Next, cells that contribute too much to the

time tn+1 solution (i.e. σi > 1) are clamped from above, and ŵij = wij/σi for these

cells. Finally, cells that have any remaining material (i.e. σi < 1) have their remaining

material pushed forward along characteristic curves. This is done through a second

semi-Lagrangian step, this time advecting a point xi forward along its characteristic

curve to a sample point x+
i ; in a first order accurate method, for example, x+

i could

be computed as xi + ∆t#un
i . Forward-advected weights fij are then computed as the

interpolation weights to x+
i over a neighborhood of cells j (such that x+

i =
∑

j fijxj).

As
∑

j fij = 1, the remaining material is fully distributed to the time tn+1 solution

if, for these cells, ŵij = wij + (1− σi)fij.

To summarize, they compute modified weights

ŵij =





wij/σi σi > 1

wij + (1− σi)fij σi ≤ 1
(5.4)

and update φ̂n+1
j =

∑
i ŵijφ̂n

i , to solve Equation (5.3). By moving data from time tn

to time tn+1 only along characteristic lines, they have consistency with Equation (5.3),

and by enforcing that
∑

j ŵij = 1 they attain numerical conservation. A key point

is that Equation (5.3) is governed by the linearly degenerate eigenvalue u, and thus

can also be used for the linearly degenerate velocity eigenvalue in the compressible

flow equations. The interested reader is encouraged to read [51], which explores the

conservative semi-Lagrangian approach in some detail, showing the benefits of using

the conservative form over Equation (5.1) even for an incompressible flow.
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(a) The control volume for a cell B is ad-
vected backward in time along its characteris-
tic curve, and its overlap onto the fixed back-
ground grid is computed as wjB = ‖Ω−

B∩Ωj‖.
The resulting weights for this particular ex-
ample are w5B = .396, w6B = 1.00, w7B =
.604, w9B = .396, w10B = 1.00, w11B = .604.
Note that these weights sum to four, which is
the size of the original control volume ‖ΩB‖
relative to the size of the smaller control vol-
umes.

(b) The control volume for a cell A is ad-
vected forward in time along its characteristic
curve, and its overlap onto the fixed back-
ground grid is computed as fAj = ‖Ω+

A ∩
Ωj‖/‖ΩA‖. The resulting weights for this
particular example are fA2 = .034, fA3 =
.039, fA4 = .006, fA6 = .212, fA7 =
.250, fA8 = .037, fA10 = .179, fA11 =
.211, fA12 = .032. Note that unlike wij these
weights sum to one.

Figure 5.1: Advected control volumes are moved backward and forward in space along
its characteristic curve, and then distributed among control volumes in the fixed grid.
Consider the examples above, where a large control volume four times the size of the
smaller cells is advected into a region of smaller grid cells.

5.2.1 Non-uniform grids

We propose a modified version of this scheme that is suitable for non-uniform grids.

In particular, we do not compute the backward-advected weights wij and forward-

advected weights fij through an interpolation kernel (although, in the case of a uni-

form grid, this method does degenerate back to that of a bi-linear interpolation ker-

nel). Instead these weights are computed as the overlap between a control volume

that moves along characteristic lines and control volumes that remain fixed on a

background grid. For brevity, we define a volume measure

‖Ω‖ =

∫

Ω

dx.

When computing wij, the control volume for cell j, Ωj, is moved backward in time

along characteristic curves by a distance |#u|∆t. This translated volume Ω−
j is then
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distributed among all overlapping control volumes from the background grid us-

ing our volume measure ‖ · ‖. These backward-advected weights are then given as

wij = ‖Ωi∩Ω−
j ‖, which is illustrated graphically for a simple example in Figure 5.1(a).

These can be thought of as volume fractions of material moving from cell i to cell

j. One could consider a control volume Ω−
j that dilates by (∇ · #u)∆t as it moves

along the characteristic curves, but we prefer the simplicity of a simple translating

n-dimensional cube at the cost of some O(∆x) numerical errors. Note that a typi-

cal semi-Lagrangian method also has no mechanism to account for this dilation and

therefore would possess similar errors. Those who pursue the semi-Lagrangian ap-

proach through a Lagrangian plus remap-style method can account for dilation and

volume changes, and although significantly more complex than our approach, they

bear some similarities; see for example [8] and the references therein.

For conservation we are interested in distributing all of the time tn volume of

material of cell i to the time tn+1 solution, or equivalently ensuring that the sum

of volume fractions
∑

j wij is equal to ‖Ωi‖. In order to enforce this, we redefine

σi =
∑

j wij as the total volume of material entering the time tn+1 solution from the

time tn cell i, and use this term in three stages as before.

If σi > ‖Ωi‖ then the cell is contributing too much volume of material to the time

tn+1 solution, and all corresponding weights are scaled down accordingly by ‖Ωi‖/σi.

This enforces that no new material is created. Cells not contributing enough to

the tn+1 solution (i.e. σi < ‖Ωi‖) have their remaining volume advected forward

along characteristic curves. This is done through a second advection step, moving

the control volume for a given cell i forward in time along characteristic curves.

This translated control volume Ω+
i is distributed among control volumes on a fixed

background grid, and forward-advected weights are computed and normalized as fij =

‖Ω+
i ∩ Ωj‖/‖Ω+

i ‖; this is illustrated graphically in Figure 5.1(b). The remaining

volume ‖Ωi‖−σi is distributed using these forward-advected weights, exploiting that
∑

j fij = 1.

To summarize, we solve Equation (5.3) on an arbitrary grid by computing backward-

advected weights wij = ‖Ωi∩Ω−
j ‖ and forward-advected weights fij = ‖Ω+

i ∩Ωj‖/‖Ω+
i ‖
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Figure 5.2: A non-uniform one-dimensional spatial grid, with flux boundaries shown
as red vertical lines and cell-centered degrees of freedom as blue points. In the depicted
grid, the smallest cell is of size ∆xf = .0625, while the largest cell is of size ∆xc = .5,
8× larger than the smallest cells. When the grid resolution r is specified, we set
∆xc = 5/r and scale the more refined regions appropriately.

as necessary, and then compute modified weights

ŵij =





(‖Ωi‖/σi)wij σi > ‖Ωi‖

wij + (‖Ωi‖ − σi) fij σi ≤ ‖Ωi‖.
(5.5)

The final update can then be written as

φ̂n+1
j =

∑

i

φ̂n
i ŵij

‖Ωj‖
. (5.6)

5.2.2 Examples

Equation (5.3) is solved for a pair of examples in one spatial dimension. The first is

a sine-wave bump advected through a constant velocity field with u = 1, with initial

state specified as

φ̂(x) =






1
2

(
1 + sin

[
4π(x− 3

8)
])

x ∈
(
1
4 ,

3
4

)

0 otherwise
.

Figures 5.3(a) and 5.3(b) compare results at time t = 4s between the volumetric con-

servative semi-Lagrangian advection and first order accurate ENO-LLF schemes on a

uniform grid. In Figures 5.3(c) and 5.3(d) a non-uniform grid (shown in Figure 5.2)

is utilized, and in Figure 5.3(e) the conservative semi-Lagrangian advection scheme

is used with an effective CFL number of α = 4 (well outside of the stability regime

of a flux-based scheme) in order to demonstrate its unconditional stability. In all of
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these simulations, the results are qualitatively similar and the peak converges to its

analytic solution at a rate of approximately .75.

We also consider a square wave being advected through a divergent velocity field

with u(x) = sin
(
π
5x
)
. In Figures 5.4(a) and 5.4(b) the results at time t = 5s are

compared between the volumetric conservative semi-Lagrangian advection and first

order accurate ENO-LLF schemes, on a uniform grid. In Figures 5.3(c) and 5.3(d) a

non-uniform grid (shown in Figure 5.2) is utilized, and in Figure 5.3(e) the conserva-

tive semi-Lagrangian advection scheme is used with an effective CFL number of α = 4

in order to again demonstrate its unconditional stability. We compute the analytic

solution via the method of characteristics, noting that the total material between two

characteristic curves does not change.

5.2.3 Hybrid flux / conservative semi-Lagrangian coupling

The conservative semi-Lagrangian advection scheme is unconditionally stable, which

makes it ideal for regions of the flow field where small or irregular grid cells are

necessary to resolve small-scale geometric detail. However, the method is limited

to first order accuracy, and so is less desirable as a solver for the bulk of the flow.

We therefore consider a hybrid formulation where the conservative semi-Lagrangian

scheme is coupled with a more traditional high order accurate flux-based scheme.

This hybrid formulation works by imposing fluxes as boundary conditions to the

conservative semi-Lagrangian solver, and so can be used with any flux-based method.

The flow field is partitioned into two regions; a flux region, where the flow is

updated entirely by fluxes computed on control volume boundaries, and a semi-

Lagrangian region, where the flow is updated using the conservative semi-Lagrangian

scheme. As flux-based schemes already prescribe material transport across control

volume boundaries, we use the fluxes on faces that separate the two flow regions in

order to determine how they interact. These boundary fluxes are computed using

information from both sides of the interface, and completely determine how the two

regions interact.

In the semi-Lagrangian region, the boundary flux must be accounted for in such a
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(a) First order accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(b) Conservative semi-Lagrangian scheme on a uniform grid, with a CFL number α = .5.

(c) First order accurate ENO-LLF on the non-uniform grid shown in Figure 5.2, with a CFL
number α = .5.

(d) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 5.2, with a
CFL number α = .5.

(e) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 5.2, with a
CFL number α = .5 taken with respect only to the coarse grid cells (and so the effective CFL
number is 4).

Figure 5.3: A sinusoidal wave is advected through a constant velocity field, u = 1,
using a variety of spatial discretizations and grids, with TVD-RK3 time integration.
Results are shown at t = 4s.
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(a) First order accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(b) Conservative semi-Lagrangian scheme on a uniform grid, with a CFL number α = .5.

(c) First order accurate ENO-LLF on the non-uniform grid shown in Figure 5.2, with a CFL
number α = .5.

(d) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 5.2, with a
CFL number α = .5.

(e) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 5.2, with a
CFL number α = .5 taken with respect only to the coarse grid cells (and so the effective CFL
number is 4).

Figure 5.4: A square wave is advected through a divergent velocity field, u(x) =
sin
(
π
5x
)
using a variety of spatial discretizations and grids, with TVD-RK3 time

integration. Results are shown at t = 5s.
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way that the method remains numerically conservative in its clamping and forward-

advection stages. Consider a hybrid control volume boundary that separates a flux-

region cell i and a semi-Lagrangian region cell j, where the flux #Fij is imposed as

a boundary condition on the semi-Lagrangian region. If the area-weighted surface

normal of this control volume boundary is d #Aij (where the normal points into the

semi-Lagrangian region), then the quantity of φ̂ moving across the hybrid control

volume boundary can be computed from the fluxes as

φ̂n
i ŵij = ∆t #Fij · d #Aij or φ̂n

j ŵji = −∆t #Fij · d #Aij

This material enters the semi-Lagrangian cell if #uf · #Aij ≥ 0, and leaves the cell

otherwise, where #uf is the velocity at the flux face.

When incorporating the boundary conditions into the volumetric conservative

semi-Lagrangian scheme, one might consider recovering ŵij by dividing through by φ̂n
i

(or φ̂n
j ). However, if φ̂

n
i = 0 (as is the case for our one-dimensional advection examples)

then this is infeasible. Instead we modify Equations (5.5) and (5.6), absorbing the

φ̂n
i term into the ŵij term as w̃ij. In the previous version of these equations ŵij had

units of volume and was clamped against the volume of the cell, ‖Ωi‖. With this new

approach we are clamping φ̂n
i ŵij, which represents the fluxed material, against the

total material in cell i (after accounting for boundary conditions).

The modified conservative semi-Lagrangian scheme accounts for boundary condi-

tions in two ways. Hybrid boundary fluxes pushing material into a semi-Lagrangian

cell j are handled by adding in new material weights w̃Fij = ∆t #Fij · d #Aij, which are

set aside until the final stage of the update. Hybrid boundary fluxes pulling material

out of a semi-Lagrangian cell j are accounted for by subtracting off that material

(w̃jFi = −∆t #Fij ·d #Aij) from the total amount of material in cell j, and so the remain-

ing material in that cell is Kj = φ̂n
j ‖Ωj‖ −

∑
i w̃jFi . Cells that do not lie adjacent to

the hybrid boundary remain unmodified and so the remaining material in that cell is

simply Kj = φ̂n
j ‖Ωj‖.

Next, the backward-cast weights wij are computed as discussed in Figure 5.1(a).

We only look back from cells in the semi-Lagrangian region and, as all of the material
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transport across the hybrid interface is accounted for by the fluxes, we discard any

weights wij where either cell i or cell j are not semi-Lagrangian cells. These weights

are then multiplied by φ̂, and we compare σ̂i = φ̂n
i

∑
j wij with Ki. If |σ̂i| > |Ki|—

that is, if cell i gives too much material to the time tn+1 solution—then we scale the

weights by Ki/σ̂i, setting w̃ij = (Ki/σ̂i)φ̂n
i wij for these cells. Note that, unlike before,

we clamp the magnitude of the sum of the weights. This is to properly account for

the case where φ̂n
i < 0.

If |σ̂i| < |Ki|—that is, the cell does not give sufficient material to the time tn+1

solution—then forward-advected weights fij are computed. If fij carries material

across the hybrid boundary then it is discarded, and all remaining weights are scaled

up accordingly (If there are no remaining weights then the remaining material is

simply left in that cell, i.e. by setting fii = 1). These forward-advected weights

are used to carry any remaining material forward as before, giving final weights for

these cells as w̃ij = φ̂n
i wij + (Ki − σ̂i)f̃ij, where f̃ij are the scaled up fij weights

that carry material to cells that are in the semi-Lagrangian region at time tn+1 (i.e.
∑

j∈s-L f̃ij = 1).

To summarize, the hybrid scheme first computes fluxes within the flux region,

and at the hybrid boundary between the flux and semi-Lagrangian regions. The

flux region is then updated using these flux values, completing the update for these

cells. At the hybrid boundary, we compute w̃Fij = ∆t #Fij · d #Aij and w̃jFi = −∆t #Fij ·
d #Aij as discussed above. Hybrid boundaries that draw material out of the semi-

Lagrangian region are then used to modify Kj by
∑

i w̃jFi . Backward-cast weights

wij are computed for semi-Lagrangian cells j, and any weights that cross the hybrid

flux boundary are discarded. Forward-cast weights fij are computed for any cells

where |σ̂i| < |Ki|, and again any weights that cross the hybrid flux boundary are

discarded. The remaining forward-cast weights fij are scaled up to f̃ij such that
∑

j∈s-L f̃ij = 1, and the material-weighted weights are

w̃ij =





(Ki/σ̂i)φ̂n

i wij |σ̂i| > |Ki|

φ̂n
i wij + (Ki − σ̂i) f̃ij |σ̂i| ≤ |Ki|.

(5.7)
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Figure 5.5: In the hybrid advection scheme, near areas where the cell size changes,
we drop the stencil width (and therefore the order of accuracy) of the flux scheme to
avoid crossing the refinement interface. In the one-dimensional example illustrated
here, the blue flux faces are solved using a third order accurate scheme. The red faces
are solved with a second order accurate scheme, while the green faces are computed
with simple upwinding. The stencils for these faces are also illustrated, just to show
that they do not cross the refinement interface. The thick black fluid face represents
the refinement boundary between the larger cells on the left and the smaller cells
on the right, and none of our first, second or third order accurate stencils cross that
boundary. One could update this flux with a first order accurate ENO scheme, similar
to the stencils shown in green to obtain what we refer to as a graded discretization near
the refinement boundary. We instead use our conservative semi-Lagrangian scheme
on the cells to the left and right of this face, with their Kj’s modified based on the
neighboring first order fluxes shown in green.

Finally we update the cells in the semi-Lagrangian region as

φ̂n+1
j = ‖Ωj‖−1

[
∑

i

w̃ij +
∑

i

w̃Fij

]
. (5.8)

As both the flux scheme and the conservative semi-Lagrangian scheme are conserva-

tive, the resulting hybrid scheme is also fully conservative.

5.2.4 Examples

We noticed that, in the non-linear examples considered later in this paper, numerical

artifacts manifest when the order of accuracy of the flow solver drops dramatically

between neighboring cell faces – these include artificial reflected waves, kinks and

overshoots. With this in mind, although the hybrid formulation is general enough to

support any flux-based scheme, we prefer a flux-based scheme with a variable-width

stencil over one that uses a fixed-width stencil such as WENO [62, 40]. That way, in

the non-linear examples we can “step down” the stencil width (and therefore order of
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accuracy) of the flow solver as it approaches a hybrid flux boundary – see Figure 5.5.

Unless otherwise stated we use ENO-LLF.

We return to the examples discussed in Section 5.2.2 on the non-uniform grid

given in Figure 5.2, and utilize the proposed hybrid scheme in order to employ a

third order accurate ENO-LLF scheme away from the refinement interfaces located at

x = {1, 1.5, 2, 3, 3.5, 4}. Since these problems are linear the aforementioned difficulties

with numerical artifacts do not exist, and therefore for the sake of exposition we take

a more aggressive non-graded approach. The semi-Lagrangian scheme is only utilized

on a lower-dimensional manifold of the computational domain—that is, only 36 cells—

and so the results are expected to be high resolution in nature. Figures 5.6(b) and

5.6(d) show the results for the sine-wave and square-wave bumps respectively, and

indeed the convergence of the peak value of the solution is only slightly degraded from

that of a third order accurate ENO-LLF scheme on a uniform grid. The peak value of

the sine-wave bump converges to its analytic value at a rate of 1.98 (as compared to

2.56), while the peak value of the square-wave bump converges to its analytic value at

a rate of .63 (as compared to .57). Note that, for the square-wave, the discontinuity

located immediately to the right of the peak value negatively impacts convergence

even for a traditional scheme on a uniform grid.
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(a) Baseline sinusoidal wave advected through a constant velocity field computed using third order
accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(b) A sinusoidal wave advected through a constant velocity field, u = 1, to final time t = 4s.

(c) Baseline square wave advected through a divergent velocity field computed using third order
accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(d) A square wave advected through a divergent velocity field, u(x) = sin
(
π
5x
)
, to final time

t = 5s.

Figure 5.6: Conservative advection is solved on the non-uniform grid shown in Fig-
ure 5.2 using TVD-RK3 time integration and a hybrid spatial discretization. The
semi-Lagrangian regions are limited to a three-cell band near refinement interfaces,
and the bulk of the flow field is treated using third order accurate ENO-LLF.
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5.3 Semi-implicit compressible flow formulation

As demonstrated in [52], a conservative semi-Lagrangian advection scheme can be

combined with the implicit pressure solve of [50] to solve the compressible Euler

equations. This first order accurate advection scheme alleviates the time step restric-

tion imposed by the bulk advection, resulting in a method which imposes no time

step restrictions for stability. The advection scheme tends to introduce significant

numerical dissipation throughout the flow, however, and was previously limited to

uniform grids. We modify the method of [50] and use our proposed modifications

both for non-uniform grid refinement and hybrid advection.

Consider the Euler equations, given by





ρ

ρ#u

E





t

+





∇ · ρ#u
∇ · (ρ#u⊗ #u)

∇ · E#u



+





0

∇p

∇ · p#u



 =





0

0

0



 (5.9)

where we have split the flux terms into an advection and non-advection part. The

advection part is integrated explicitly to give intermediate values ρ", (ρ#u)" and E",

and since pressure does not affect the continuity equation we can set ρn+1 = ρ". The

resulting momentum update equation is divided by ρn+1, giving

#un+1 = #u" −∆t
∇pn+1

ρn+1
, (5.10)

and its divergence is taken to obtain

∇ · #un+1 = ∇ · #u" −∆t∇ ·
(
∇pn+1

ρn+1

)
. (5.11)

The pressure evolution equation (see [24]), which is given by

pt + #u ·∇p = −ρc2∇ · #u, (5.12)

is semi-discretized by fixing ∇ · #u to time tn+1 through the time step and by treating
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advection terms explicitly. Denoting the advected pressure field by pa = pn−∆t#u ·∇p

gives

pn+1 = pa −∆tρc2∇ · #un+1. (5.13)

Substituting this in to Equation (5.11) and rearranging gives

pn+1 −∆t2ρn(c2)n∇ ·
(
∇pn+1

ρn+1

)
= pa −∆tρn(c2)n∇ · #u", (5.14)

where we have fixed ρc2 to time tn. We compose the ρn(c2)n terms into a diago-

nal matrix P = [∆t2ρn(c2)n] and discretize the gradient and divergence operators,

yielding
[
P−1 +GT (ρ̂n+1)−1G

]
p̂n+1 = P−1p̂a +GT #̂u", (5.15)

where G is the discretized gradient operator, −GT the corresponding discretized di-

vergence operator, the pressures are scaled by ∆t (i.e. p̂ = p∆t), and ρ̂ and û represent

variables interpolated to cell faces. This implicit system is solved to obtain pn+1 at

cell centers. These time tn+1 pressures are then applied in a flux-based manner to

the intermediate momentum and energy values to obtain time tn+1 quantities in a

discretely conservative manner, giving correct shock speeds. This is done as follows.

Pressures are averaged using a density weighting in order to compute the pressure at

cell faces as

p̂i+1/2 =
ρip̂i+1 + ρi+1p̂i

ρi + ρi+1
(5.16)

and face velocities at time tn+1 are computed by rewriting the momentum update

using face-averaged quantities as

ûn+1
i+1/2 = û"

i+1/2 − ρ̂−1
i+1/2Gi+1/2p̂

n+1, (5.17)

where Gi+1/2 is the row of G corresponding to face i+ 1/2 and û"
i+1/2 =

(ρu)%i+(ρu)%i+1

ρ%i+ρ%i+1
.

The flux-based implicit update then takes the form

(ρ#u)n+1
i = (ρ#u)"i −

p̂n+1
i+1/2 − p̂n+1

i−1/2

∆x
, En+1

i = E"
i −

p̂n+1
i+1/2û

n+1
i+1/2 − p̂n+1

i−1/2û
n+1
i−1/2

∆x
.

(5.18)
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5.3.1 Computing the advected pressure

In previous work, pa = pn−∆t#u ·∇p was computed using Hamilton-Jacobi ENO [50].

When doing so they noticed Gibbs phenomena near the shock front (which can be

seen in the left column of Figure 5.7), and in order to mitigate these oscillations a

MAC grid-based ENO (or MENO) variant of ENO was introduced. We do not use

MENO in any of our examples; instead, we compute the advected pressure as

pa = p(ρ", e"),

i.e. by using the equation of state directly on the post-advected flow-field. This

appears to reduce oscillations near the shock front – see the right hand column of

Figure 5.7. The reduced oscillations may be due to pa being more consistent with

the advection step, although some Gibbs phenomena features still appear in the

momentum and energy, most likely due to the centrally differenced nature of the

pressure update. This variant method of computing pa appears to be beneficial in a

number of our tests, but we did not extensively experiment for example with highly

non-linear equations of state. This approach is also more efficient, having removed

the Hamilton-Jacobi advection step.

5.3.2 Modified ENO-GLF scheme

In the higher spatial dimension examples considered later on in Section 5.5.3, we

noticed that the third order accurate ENO-GLF (that is, global Lax-Friedrich’s dif-

fusion) scheme sometimes artificially cavitated (with internal energy going negative)

during the flux-based advection update. This occured at Mach stems such as the one

highlighted in Figure 5.8, and only for the third order accurate variant of ENO-GLF;

first and second order accurate variants of ENO-GLF do not cavitate. We believe

that this is due to dispersive errors in the flow field introduced by the Lax-Friedrich’s

diffusion term, due to those terms being evaluated for a higher order derivative than

that of the flux gradient itself. Thus, when the dominant errors in the evaluation of

the flux are dissipative, the dominant errors in the Lax-Friedrich’s term are dispersive
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(a) Density from HJ-ENO. (b) Density from pa = p(ρ", e").

(c) Momentum from HJ-ENO. (d) Momentum from pa = p(ρ", e").

(e) Internal energy from HJ-ENO. (f) Internal energy from pa = p(ρ", e").

Figure 5.7: A comparison of the impact of how pa is computed. On the left column
a third order accurate Hamilton-Jacobi ENO scheme is used to compute pa = pn −
∆t#un ·∇pn. On the right, the advected pressure is computed directly from the post-
advected fluid state #U" – that is, pa = p(ρ", e"). Both methods capture the shock
location properly, by virtue of being conservative, but the second approach appears to
have significantly reduced overshoots at the shock front. Both solutions are computed
on uniform grids using TVD-RK3 time integration and standard third order accurate
ENO-GLF to handle advection. The CFL number α is .5, and results are shown for
t = .25s.
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Figure 5.8: In this two-dimensional example (explored in further detail in Sec-
tion 5.5.3), artificial cavitation occurs in the circled region, behind a Mach stem,
when the standard Lax-Friedrich’s third order accurate variant of ENO is used to
compute #U". Shown are isocontours for density for the example described in Sec-
tion 5.5.3 at time t = .2s.

leading to numerical difficulties (of course, this analysis only rigorously applies in the

linear sense).

Through experimentation, we found that truncating the divided difference table

for the Lax-Friedrich’s term to that of a lower order polynomial appears to alleviate

this numerical cavitation. That is, we compute globally valid divided difference tables

for F and φ̂ as

D1
iF = F(φ̂i) D1

i φ̂ = φ̂i

D2
i+1/2F =

D1
i+1F −D1

iF
2∆x

D2
i+1/2φ̂ =

D1
i+1φ̂−D1

i φ̂

2∆x

D3
iF =

D2
i+1/2F −D2

i−1/2F
3∆x

where, unlike the traditional third order accurate variant, we prescribeD3
i φ̂ to be zero;

this is equivalent to fixing the degree of the polynomial approximating the diffusion

term to be at most of order 2. The left-upwinded and right-upwinded flux terms

(F+
i+1/2 and F−

i+1/2, respectively) are then computed using the locally valid divided

difference tables, which are given by

D1
i [F ± αφ̂] = D1

iF ± αD1
i φ̂, D2

i+1/2[F ± αφ̂] = D2
i+1/2F ± αD2

i+1/2φ̂,

and D3
i [F ± αφ̂] = D3

iF .
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We designate this truncated diffusion version of ENO-GLF as ENO-GLFT. We com-

pare ENO-GLFT with the standard second order accurate variant of ENO-GLF in

Figure 5.9 to show the impact of factoring in the third order accurate terms for F
but not the third order accurate diffusion term. The standard second order accurate

variant is shown in the left column, and ENO-GLFT is shown in the right column.

There are no significant differences in the rarefaction region, x ≤ .5, and minimal

differences near the shock front near x = .937. However, near the linearly degen-

erate contact discontinuity at x = .734 significant improvement in accuracy can be

seen. Although not shown, no discernible difference is seen in the pressure or velocity

– both of which are continuous at linearly degenerate contact discontinuities. The

ENO-GLFT method also compares well with standard third order accurate ENO-

GLF, shown as the right-hand column of Figure 5.7. The most noticeable difference

appears at the shock front, where the overshoots for ρ and e are reduced in magnitude

as a result of this modification. This benefit is secondary, however, to the improved

stability for the examples discussed in Section 5.5.3. Using our modified variant to

third order accurate ENO-GLF no artificial cavitation occurs, unlike in the case where

the standard third order accurate ENO-GLF is used.

5.3.3 Non-uniform grids

In order to write the momentum update for a dual cell, we begin by distributing each

cell-centered momentum term evenly between their axis-appropriate left and right cell

faces. That is, ρu is evenly distributed to the x-axis cell faces and ρv to the y-axis

cell faces. The momentum for an x-axis cell face can then be written as

βi+1/2ûi+1/2 =
1

2
[Vi(ρu)i + Vi+1(ρu)i+1]

where û is the velocity component associated with the dual cell, V are the cell volumes,

and β is the effective mass of the dual cell computed as the sum of the masses related

to each component of momentum, i.e. βi+1/2 =
1
2(Viρi + Vi+1ρi+1). Note that if there

is a Neumann boundary on a cell face, only the density and momentum from the

fluid side is used. Next we define the volume-weighted divergence operator as −ĜT
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(a) Density using second order accurate
ENO-GLF.

(b) Density using ENO-GLFT.

(c) Momentum using second order accurate
ENO-GLF.

(d) Momentum using ENO-GLFT.

(e) Internal energy using second order accu-
rate ENO-GLF.

(f) Internal energy using ENO-GLFT.

Figure 5.9: A comparison of the impact on how the advection step is spatially dis-
cretized. In the left column a standard second order accurate ENO-GLF is used
to compute the advective fluxes, while in the right column the ENO-GLFT of Sec-
tion 5.3.2 is used. There is no significant difference near the rarefaction region, x ≤ .5,
and the difference near the shock (located near x = .937) is minimal. At the contact
discontinuity, however, a significantly faster convergence rate is seen – indeed these
results compare qualitatively well with those depicted in the right-hand column of
Figure 5.7, where an unmodified version of the third order accurate ENO-GLF scheme
is used. The CFL number α is .5, and results are shown for t = .25s.
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by multiplying the regular divergence operator through by the volume of the cell (see

for example [65, 67]). Then the negative transpose of this is the gradient operator Ĝ,

which can be used to write the momentum update for the dual cells as

#̂un+1 = #̂u" − β−1Ĝp̂n+1. (5.19)

Taking its volume-weighted divergence with −ĜT gives

−ĜT #̂un+1 = −ĜT #̂u" + ĜTβ−1Ĝp̂n+1. (5.20)

And following the derivation of Equation (5.15) then leads to

[
P̂−1 + ĜTβ−1Ĝ

]
p̂n+1 = P̂−1p̂a + ĜT #̂u" (5.21)

where G and GT are replaced by Ĝ and ĜT , the density and velocity at cell faces are

computed using the volume-lumping explained in the beginning of this subsection,

and the diagonal matrix P̂−1 = V/[∆t2ρn(c2)n] is the volume-scaled version of P−1

above.

Once this implicit pressure p̂n+1 is computed, we apply it back to the conserved

variables in a flux-based manner in order to remain conservative. The updates for

momentum and energy for a given cell i can be written

(ρ#u)n+1
i = (ρ#u)"i −

p̂n+1
i+1/2 − p̂n+1

i−1/2

∆
and En+1

i = E"
i −

p̂n+1
i+1/2û

n+1
i+1/2 − p̂n+1

i−1/2û
n+1
i−1/2

∆
(5.22)

where both p̂n+1 and ûn+1 are evaluated at face locations, and the discretization

width, ∆, can be recovered by dividing the volume associated with the cell Vi by the

dual cell face area Ai−1/2 = Ai+1/2, i.e. ∆ = Vi+1/2/Ai+1/2. Note our cross-sectional

areas A do not change, and are always equal to either ∆x or ∆y depending on the

dimension. The pressure for a given cell face i+1/2, p̂n+1
i+1/2, is computed as a density-

weighted average of the two cells adjacent to the face as in Equation (5.16), and the
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face velocity ûn+1 is recovered from Equation (5.19) as

ûn+1
i+1/2 = û"

i+1/2 − β−1
i+1/2Ĝi+1/2p̂

n+1, (5.23)

similar to Equation (5.17) withG replaced by Ĝ, ρ̂ replaced by β, and the #̂u" computed

using the volume-lumping explained in the beginning of this subsection.

If one knows the Neumann velocity ûn+1
i+1/2 for a constrained face, then the pressure

gradient Ĝi+1/2p̂n+1 at that face can be recovered from Equation (5.19) using βi+1/2

and û"
i+1/2 from above. At a constrained Neumann face we can compute

p̂n+1
i+1/2 = p̂n+1

i + dĜi+1/2p̂
n+1,

where d is the distance from the cell center i to the cell face i + 1/2 (see for exam-

ple [67]). Note, however that d is a O(∆x) term and that typically only a lower-

dimensional manifold of cell faces are constrained as Neumann faces, and thus one

could also set p̂n+1
i+1/2 = p̂i.

5.3.4 Sod’s shock example

We consider Sod’s shock with initial conditions specified over a computational domain

of [0, 1] as

(ρ(x, 0), u(x, 0), p(x, 0)) =





(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5,

where the baseline solution, computed on a uniform grid using ENO-GLFT and

the improved computation for advected pressure, was shown in the right column

of Figure 5.9. Here we consider Sod’s shock under non-uniform grid refinement us-

ing the grid pattern shown in Figure 5.2, except that the domain is [0, 1] rather

than the depicted [0, 5]. Each of the refinement boundaries, now located at x ∈
{.2, .3, .4, .6, .7, .8}, are treated as described in Figure 5.5—that is, ENO stencils in

the vicinity of these refinement boundary faces are reduced in width so as not to cross

refinement faces, and the cells immediately to the left and right of the refinement face

represent the semi-Lagrangian region. The resulting flow field at t = .25s is shown in



CHAPTER 5. THIN-SHELL CONSERVATIVE FSI 151

Figure 5.10. We could also treat the region within x ∈ [.2, .8] as the semi-Lagrangian

region and take 8 times larger time steps, using only the coarsest grid cells to dictate

the time step. The resulting flow field is shown in Figure 5.11 and demonstrates the

unconditional stability of the hybrid semi-implicit solver on the non-uniform grid.

It is interesting to note the over-heating that appears in the internal energy shown

in Figure 5.11(e), near x = .875. This seems to be generated when a shock passes

from the fully refined semi-Lagrangian region in x ∈ [.2, .8] into the flux-based region.

After the shock passes through that hybrid interface, the overheating peak passively

advects with the flow. An isobaric fix such as the one discussed in [25] may alleviate

these peaks, but doing so would sacrifice conservation. Similar but less pronounced

issues occur in Figure 5.10(e) when the scheme used to capture the numerical shock

changes.
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(a) Density (b) Pressure

(c) Momentum (d) Velocity

(e) Internal Energy (f) Total Energy

Figure 5.10: Results for a Sod shock at t = .25s, when computed via the semi-implicit
formulation on a non-uniformly refined grid, using the hybrid advection scheme and
TVD-RK3 time integration. The twelve cells at the refinement boundary represent
the semi-Lagrangian region, and the remainder of computational domain are solved
using ENO-GLFT (dropping the order of accuracy locally as discussed in Figure 5.5).
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(a) Density (b) Pressure

(c) Momentum (d) Velocity

(e) Internal Energy (f) Total Energy

Figure 5.11: Results for a Sod shock at t = .25s, when computed via the semi-implicit
formulation on a non-uniformly refined grid, using the hybrid advection scheme and
TVD-RK3 time integration. All cells between x = .2 and x = .8 are treated using the
conservative semi-Lagrangian advection scheme, and the time step is dictated only
by the coarse grid cell sizes.
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5.4 Fluid-structure interactions

We modify the fluid-structure solver of [31] by incorporating cut cells and partial cell

volumes into both the explicit advection and the implicitly coupled stage of the solver.

This is done without introducing any new degrees of freedom; instead cut cells are

populated on the fly, advected using the conservative semi-Lagrangian scheme, and

then their material is redistributed back to cell-centered degrees of freedom. Since

the semi-Lagrangian scheme is only used in a thin band of cells near the structure

interface, standard high resolution results are obtained in the bulk of the flow field.

5.4.1 Computing cut cells

Fluid grid cells that are cut by the structure interface are divided into a number of

partial cell volumes, and each of these polygonal regions are assigned some sample

points to aide in the computation of visibility (see Sections 5.4.2 and 5.4.3). While

a number of techniques exist in the literature, we use a straightforward approach

where the simplices of the structure interface are first clipped to a cell volume and

then stitched together with the cell volume boundary to form the cut cell volumes.

This is trivial in one spatial dimension, and illustrated for two spatial dimensions in

Figure 5.12. Visibility sample points are computed for these polygonal regions in an

ad hoc fashion by identifying the significant features such as the nodes and face centers

of the cut cell geometry, centroid, etc., that do not lie along the structure interface—

see e.g. the yellow and green dots shown in the fourth subfigure of Figure 5.12. For

all non-cut cells in the semi-Lagrangian region, we use the cell center for visibility

as necessary. In general any approximate interface reconstruction suffices so long as

some estimate of cell volume can be given, and some ability to determine visibility is

provided. Note that we do not consider three spatial dimensions in this paper, however

there is no intrinsic three-dimensional limitation to the algorithm as described.

We do not consider three spatial dimensions in this paper, and instead refer the

interested reader to [4] or [91] where cut cell generation techniques are discussed.
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Figure 5.12: When a grid cell is cut by a structure interface (shown as a red segmented
curve), we first clip the segments of the curve against cell boundaries as shown in
the second figure. Then the clipped interface is stitched together with contiguous
components of the cell volume boundary, yielding the cut cells shown in as the red and
blue polygons in the third figure. Finally, the visibility sample points are computed
as the significant features of the polygon that do not lie on the structure interface,
and lie inside the cut cell polygon Ω or on the cut cell’s boundary ∂Ω (see the yellow
and green dots in the last figure).

5.4.2 Material lumping

The goal of material lumping is to make sure that all cut cells are associated with a

cell-centered degree of freedom. The left-hand polygonal region shown in Figure 5.12

contains its own cell center, and so is trivially associated with it. The right-hand

polygonal region shown in Figure 5.12 on the other hand does not contain a cell

center, and moreover cannot be lumped onto the cell center associated with its own

grid cell as that cell center lies on the wrong side of the structure interface. Instead this

polygon is lumped onto visible adjacent degrees of freedom. In order to determine

which adjacent degrees of freedom are visible we look at all orthogonally adjacent

neighbors and cast rays from the sample points of the cut cell to the adjacent cell

centers; if any of the rays do not intersect the solid interface, which is fixed in time,

then that neighbor is visible (note that adjacent cells may also be a cut cell that

contains its own cell center degree of freedom, and so the left-hand polygon from

Figure 5.12 could also absorb material from neighboring cut cells). If none of the

orthogonally adjacent neighbors are visible we look to diagonally adjacent neighbors,

and if none of those are visible we discard the polygon and its volume. Note that this

does not violate conservation except at time t0 as we are careful not to assign any
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material to these cut cells during advection—see Section 5.4.4. If this is a problem

at time t0 one could still enforce conservation by manually moving this material to

adjacent degrees of freedom.

Once we have a list of all visible neighbors, whether it be a number of orthogonally

adjacent neighbors or alternatively a number of diagonally adjacent neighbors, we

compute a conservative material distribution operator. This is done by putting an

axis-aligned bounding box around the polygon, and using the ratio between the sides

of the rectangle to determine how much volume is distributed to each of the visible

adjacent cells. Let AL and AR be the lengths of the left and right sides of the rectangle

(where AL = AR), and AT and AB are the lengths of the top and bottom sides of the

rectangle (where AT = AB), setting the corresponding value to zero if that orthogonal

cell center is not visible. The remaining weights are normalized so that they sum to

one, and then used to conservatively distribute the cut cell’s volume to surrounding

cell-centered degrees of freedom. In the case where no orthogonally adjacent cells are

visible and instead only diagonally adjacent cells are visible, we set all weights equal,

i.e. the volume is equally distributed to all visible diagonal cells. After distribution

the per-unit-volume quantities at the cell-centered degrees of freedom are changed in

order properly account for the lumped material. For example, the new density ρ at

the cell center can be computed as

ρnew =
M + M̄cut

V + V̄cut
(5.24)

where M and V is the cell mass and volume respectively before lumping, M̄cut is the

mass lumped onto the cell center from all neighboring cut cells and V̄cut is the total

volume lumped onto the cell center from neighboring cut cells. Equation (5.24) is

also applied to the momentum and energy. At this point all material and volume has

been associated with a standard Cartesian degree of freedom.
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5.4.3 Temporal visibility

Now that we have computed our cut cells and lumped orphaned volumes onto neigh-

boring degrees of freedom where possible, we next re-address visibility from the stand-

point of what is required for advection. Advection occurs between time tn and time

tn+1 and thus we build a temporal visibility map using continuous collision detection

[9, 32] as opposed to the static solid positions used above in Section 5.4.2. Recall

that all cells near the structure interface will be treated with the semi-Lagrangian

method; then we say that a time tn full or cut cell i and a time tn+1 full or cut cell

j can interact with each of other if there exists at least one pair of sample points

that one can travel between during the time step without colliding with the moving

structure—this is where continuous collision detection is used. Conceptually speaking

we place a particle at the time tn sample point and give it a constant velocity equal

to the displacement vector to the time tn+1 sample point divided by the size of the

time step. Then if this particle collides with the moving solid interface at some time

τ , these sample points cannot reach each other. For our purposes we linearize the

motion of each segment of the solid structure and check the particle collision against

all segments which are near it (e.g. that are within one grid cell of the particle over

the time step; this can be determined quickly via acceleration structures). If a given

time tn cut cell cannot see anything at time tn+1, then that cut cell and its volume

is discarded; this does not violate conservation as the conserved quantities can be

left on cell-centered degrees of freedom (i.e. that material is never “unlumped” from

the cell-centered degree of freedom). Note that a collision can only occur if the three

involved points become colinear at some time τ ∈ [tn, tn+∆t], and a secondary check

must be done to see if the colinear particle lies within the line segment. Very robust

algorithms exist for doing this, as can be seen by the collisions in the cloth simula-

tions of [9] and the water and cloth simulations in [32]. In three spatial dimensions

one must determine τ as the times of coplanarity for four particles, and this requires

solving for the roots of a cubic polynomial. We caution the reader that those authors

discovered that double precision was required to solve the resulting cubic as opposed

to single precision, which was not accurate enough to capture all collisions. Moreover

closed-form solutions for the cubic are not accurate enough and one must instead use
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an iterative solver.

5.4.4 Advection

As discussed in Section 5.4.2 volume from cut cells was lumped on to cell-centered

degrees of freedom. At the beginning of the advection stage these degrees of freedom

return the same exact volume that they received back to their cut cells, along with a

proportional amount of their current material. That is, the mass given to a cut cell is

ρnVcut, where Vcut was the volume lumped onto the degree of freedom from that cut

cell and ρn is the current density at the cell center. Momentum and energy is handled

in the same manner. In particular, note that cut cells receive the same volume that

they gave, but different amounts of material.

For any cut cell that has a computed geometry, we use its bounding box to trans-

form the complicated geometry into a Cartesian cell (i.e. a rectangle). Thus at time

tn we have a collection of Cartesian cells, those from the regular grid along with the

cut cells bounding boxes, which we note may overlap each other. Then for a given

full or cut cell at time tn+1, the center of its rectangle is traced backwards along

its characteristic curve and is intersected against time tn full and cut cells bounding

boxes (as described in Figure 5.1). Note that overlapping cut cells do not change our

algorithm, we simply calculate the overlap with every cell and apply this scheme as if

there were no overlap. The backward-cast ray may cross over the structure interface

and permit flow to leak across it, and one could improve the guess for the end-point

of the backward-cast ray by taking into account the moving structure interface via

continuous collision detection, recording the collision location on the structure inter-

face, and then following that position on the structure back to time tn. In fact, as

we are tracing volumes back in time one might even consider using continuous colli-

sion detection on the boundary of the volume to compute a squished backward-cast

volume, similar in spirit to VOF and ALE methods, but this quickly becomes quite

complicated (especially in three spatial dimensions). A somewhat simpler approach

would be to only collide the cell center and then try to reconstruct a traced-back

Cartesian cell by sending out rays to each of its four corners, colliding these rays with
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the time tn structure interface to create a quadrilateral—though even that quadrilat-

eral’s overlap with other cells requires scrutiny as parts of the quadrilateral volume

may lie on the wrong side of the interface even if the four corners do not. We instead

propose a simple approach that uses the temporal visibility map from Section 5.4.3.

After tracing back the cell center, whether one wishes to collide it with the moving

solid structure or not (for more accuracy), we simply place the orthogonally aligned

cell (or cut cell bounding box) at the foot of the characteristic as in Figure 5.1.

Then when calculating overlap, again as in Figure 5.1, we simply ignore cells that

are not visible to the original cell according to the visibility map. The clamping step

of advection does not change, and all of the statements made above for backward

advection also hold for the forward advection step. That is, we simply push our point

forward along its characteristic curve, potentially colliding it with the time-evolved

structure for more accuracy, and compute the weights as the overlap of rectangles

discarding any that are not visible according to the temporal visibility map. Unlike

backward-advection if weights are discarded in the forward advection step then the

remaining forward-advected weights fij are scaled up accordingly so that no material

is lost, providing for conservation. If all weights are discarded then we can distribute

material to any nearby cells which are allowed for by the temporal visibility map. One

could consider not only those near the destination, but also those along the charac-

teristic curve and near the original cell itself. If this fails one might need to go back

and reconsider the temporal visibility map itself, possibly placing more sample points

in the cells or expanding how one searches. Generally speaking we are providing a

strategy, and have found that the simplest possible version of that strategy works for

our examples, however for completeness we are describing how one should proceed as

examples become more complex.

Whereas advection proceeds with every full and cut cell treated as a normal cell,

afterwards the material and volume in cut cells are distributed back to cell-centered

degrees of freedom as described above in Section 5.4.2. If the visibility map at time

tn+1 contains a cut cell that currently has material in it but cannot be lumped onto

any adjacent neighbors, then we alter the previously described advection scheme to

not advect material into this cell—otherwise that material would be lost, violating
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conservation. Note that our treatment works by computing weights locally, and so

does not work in the case of some structure-structure collision where material is

instantaneously forced to move rather large distances as it is squeezed out of a region

of the computational domain, or in areas of unresolved curvature where a structure

folds in upon itself. This represents an area of future work, however hypothetically

speaking our strategy seems to extend to these cases, although the required code

might contain complexities we have not anticipated. It is worth noting that this

problem does not seem to have been addressed in the literature.

5.4.5 High resolution time integration near the fluid-structure

interface

As the volume associated with a given fluid degree of freedom changes or vanishes,

the state averaging that Runge-Kutta time integrators rely on to achieve high order

accuracy breaks down, violating conservation and—if the structure is thin—mixing

flow variables from both sides of the structure interface. One might consider a so-

phisticated solver that volume-weights the state variables, but unfortunately this still

fails when the volume associated with a particular degree of freedom vanishes en-

tirely. This issue only arises near the fluid-structure interface and so we still use

Runge-Kutta in the flux-based region of the flow.

We couple the semi-Lagrangian solver for the region near the structure inter-

face with the flux-based Runge-Kutta solver in the bulk of the domain as follows.

First consider second order Runge-Kutta (RK2), which can be applied by taking

two forward-Euler steps and then linearly interpolating between the solution at time

tn and time tn+2 to obtain the solution at time tn+1. To hybridize this with our

semi-Lagrangian scheme we take the first Euler substep for both the flux-based and

semi-Lagrangian regions as usual. Then the second Euler step can be taken for the

flux-based scheme and the averaging can be performed to obtain a final time tn+1

solution in that region. Note that the actual flux that takes one from time tn to the

final time tn+1 in RK2 is simply the average of the two computed fluxes, and thus we

can use that averaged flux as the effective flux to step forward the flux-based region,
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obtaining the same answer. Thus we can use that averaged flux as the boundary

condition for the semi-Lagrangian scheme, which can then take an Euler step forward

from time tn to time tn+1 in order to obtain the final solution in that region.

Third order TVD Runge-Kutta (TVD-RK3) proceeds similarly as follows. Similar

to RK2 one takes two Euler steps, and one semi-Lagrangian step would be needed to

compute the second Euler step in the flux-based region, and then time averaging is

done in that region to obtain a solution at time tn+1/2. The effective flux for this is

the same as above, albeit for half a time step, and so exactly as in RK2 we use this as

a boundary condition to evolve the semi-Lagrangian region forward by ∆t/2 to time

tn+1/2. Then we have data everywhere in the domain in order to take another Euler

step in the flux-based region to go from time tn+1/2 to time tn+3/2, at which point one

can take a linear average between that solution and the time tn solution to compute

the final solution in the flux-based region at time tn+1. Once again this can be seen

as a single time step with an averaged flux, which is 1/6 of the first and second fluxes

and 2/3 of the third flux, and use this averaged flux as a boundary condition on the

semi-Lagrangian region to evolve that region of the flow to time tn+1. Unlike RK2

where all the temporal visibility information from time tn to time tn+1 is enough, as

the semi-Lagrangian region only evolves between these two states, in this case one

needs to also compute all the temporal visibility information at the time tn+1/2, as

the semi-Lagrangian region must be evolved to this state in TVD-RK3. The solid

evolution also needs to be done to time tn+1/2 and we simply take the linearly averaged

state (e.g. Xn+1/2
S = 1

2 [X
n
S + Xn+1

S ]) and use effective velocities. Finally, note that

our treatment of time integration near the flux boundary is not aimed particularly at

addressing accuracy, rather the goal of having a TVD-RK3 method is as much of the

domain as possible is to provide an enhanced stability region—one typically applies

RK3 to other compressible flow problems for the same reason, an enhanced stability

region.
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5.4.6 Solid evolution

The solid state is completely described by its velocity VS(t) and position XS(t), and

we update the position and velocities separately in a Newmark-style scheme. Note

that throughout the paper when we refer to an effective velocity, we do not mean VS

but rather (Xn+1
S − Xn

S )/∆t, a velocity based entirely on displacements. First the

velocity is evolved for half a time step to V n+1/2
S , and then this intermediate velocity

is used to update the position via Xn+1
S = Xn

S + ∆tV n+1/2
S . Finally, the velocity is

reset to time tn and evolved for a full time step ∆t to compute the time tn+1 state.

For deforming bodies we update the velocity via

MSV
n+1
S = MSV

n
S +∆tF (Xn

S , V
n+1
S ).

where MS is the mass matrix and F are the forces, which are treated explicitly in

position via Xn
S and implicitly in velocity via V n+1

S . Applying Taylor series on the

velocity term of F (·, ·) gives

MSV
n+1
S = MSV

n
S +∆t(F (Xn

S , V
n
S ) +D(Xn

S )[V
n+1
S − V n

S ])

where D = ∂F
∂VS

are the linear damping terms. We then explicitly compute

MSV
"
S = MSV

n
S +∆t [F (Xn

S , V
n
S )−D(Xn

S )V
n
S ]

and implicitly solve

MSV
n+1
S = MSV

"
S +∆tD(Xn

S )V
n+1
S . (5.25)

Note that since Xn+1
S was already computed before solving for V n+1

S one could also

use Xn+1
S rather than Xn

S when computing F (·, ·) and D(·), for enhanced stability.

Note also that V n+1/2
S is computed in the same manner as V n+1

S including both lin-

earization and the implicit solve, however for V n+1/2
S only Xn

S exists and therefore one

cannot use a future XS for enhanced stability. A rigid body has significantly fewer

degrees of freedom than a deforming body with its center-of-mass and orientation

as positional degrees of freedom, and center-of-mass velocity and angular velocity as
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velocity degrees of freedom. Using generalized mass and velocity its equations can be

treated in a manner similar to the deformable case, except that there is no intrinsic

damping and no need for the implicit solve. For more details on rigid and deformable

body simulation in regards to two-way solid-fluid coupling see [88].

5.4.7 Coupled time evolution

Our time integration scheme proceeds as follows. Using the time tn solid position, we

first determine all fluid faces which need to be constrained to the solid as discussed

in Section 5.4.8. Note that a later step will consist of determining those at the

solid’s time tn+1 position, and therefore one can use the time tn+1 constraints from

one time step as the time tn constraints at the next time step (i.e. this only needs

to be done once per time step). Next we explicitly compute the intermediate solid

momentum MSV "
S , after which we formulate and solve the solid-fluid coupled system

(see Section 5.4.8) to find the intermediate solid momentum MSV
n+1/2
S , which is used

to update the position from Xn
S to Xn+1

S before the velocity is reset to its original

time tn values. This gives our final time tn+1 position of the solid, which we then use

to once again determine which fluid cell faces need to be constrained. Next we need

to update both the fluid state and solid momentum to time tn+1. This is done by

first advecting the fluid forward in time using the fully conservative interpenetration-

free advection algorithm of Section 5.4.4 in the Runge-Kutta style time integration

of Section 5.4.5. We also compute the intermediate momentum for the solid MSV "
S .

Finally we once again solve the coupled system (of Section 5.4.8) to find the final

time tn+1 momentum of the solid, as well as the final time tn+1 fluid state.

5.4.8 Implicit monolithic system

Constraints are identified through a ray-casting approach, where for every fluid cell

we cast a ray from its cell center to the center of each of its orthogonal neighboring

cells; if the ray intersects the structure interface then a constraint is introduced. We

use a restriction operator W that acts on fluid grid cell faces and returns a vector

of constrained faces. Note that there may be up to two constraints per cell face, if
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there is fluid on both sides of the structure interface. These constraints are treated

independently, and do not interact except through the solid constitutive model. The

other matrix of interest is J, which is a conservative interpolation operator that maps

solid velocity degrees of freedom to constraint locations [89].

At each constrained face we enforce velocity continuity. Writing this as an equation

for all constrained faces results in

JV n+1
S −Wûn+1 = 0. (5.26)

This constraint is enforced using a set of impulses λ that are exchanged between the

fluid and the structure. Equation (5.25) for the structure becomes

MSV
n+1
S = MSV

"
S +∆tDV n+1

S − JTλ. (5.27)

and the corresponding equations for the fluid become

#̂un+1 = #̂u" − β−1Ĝp̂+ β−1WTλ, (5.28)

Since the row sums of both JT and WT are unitary, any momentum lost by the struc-

ture is recovered by the fluid and vice versa, making the method fully conservative in

momentum.

Then we assemble the following linear system





P̂−1 + ĜTβ−1Ĝ −ĜTβ−1WT 0

−Wβ−1Ĝ Wβ−1WT −J

0 −JT −MS +∆tD









p̂n+1

λ

V n+1
S



 =





P̂−1p̂a + ĜT #̂u"

−W#̂u"

−MSV "
S



 ,

(5.29)

where the equations for the fluid pressure come from the derivation of Equation (5.21)

incorporating the additional λ term from Equation (5.28), the equations for the solid

velocity come from Equation (5.27), and the middle row of equations come from

substituting Equation (5.28) in to Equation (5.26). For newly swept or uncovered

pressure degrees of freedom, we replace the [ρn(c2)n] terms of P with [ρ"(c2)"]. This
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is the only special treatment given to swept and uncovered cell-centered degrees of

freedom.

Following [88] we also assume that −∆tD = ĈT Ĉ, i.e. that the structure damping

matrix is symmetric negative definite. We introduce new degrees of freedom f = ĈVS,

and Equation (5.27) can be premultiplied by M−1
S , giving

V n+1
S = V "

S −M−1
S ĈTfn+1 −M−1

S JTλ, (5.30)

Substituting Equation (5.30) into the middle set of rows in Equation (5.29) and

multiplying the third row by ĈM−1
S gives




P̂−1 + ĜT β−1Ĝ −ĜT β−1WT 0

−Wβ−1Ĝ Wβ−1WT + JM−1
S JT JM−1

S ĈT

0 ĈM−1
S JT I + ĈM−1

S ĈT








p̂n+1

λ

fn+1



 =




P̂−1p̂a + ĜT &̂u"

JV "
S − W&̂u"

f"



 . (5.31)

After solving this symmetric positive-definite system we recover the solid velocities via

Equation (5.30), and are careful to keep the momentum and kinetic energy exchange

conservative as explained in detail in [31].
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5.5 Examples

We consider a number of one-dimensional and two-dimensional fluid-structure exam-

ples. In the discussion below all units are presented in SI (that is, mass in kg, velocity

in m/s etc.). In all of the examples discussed, we found the implicit system to be

well-behaved as a result of the large diagonal terms, and so we use a simple diagonal

preconditioner when solving Equation (5.31), i.e. we row-scale and column-scale the

matrix. The matrix form of our preconditioner is





P̂ 0 0

0
(
Wβ−1 + JM−1

S

)−1
0

0 0 I



 ,

and the resulting system requires only between 11 and 36 iterations of Conjugate

Gradients to converge to numerical round-off, depending on the structural model.

The P̂ term alone brought down the number of iterations from on the order of 150 to

around 13, and adding the
(
Wβ−1 + JM−1

S

)−1
only reduced the average by about 2

iterations. We did not further experiment with preconditioning, as the P̂ alone seems

good enough, however we did use the matrix given above in our simulations, even

though the middle term provided only marginal improvement.

5.5.1 One-dimensional Sod shock coupled with a thin rigid

body of varying mass

A one-dimensional rigid point-mass is inserted into a Sod shock tube simulation,

where the flow is initially prescribed over x ∈ [−1, 3] as

(ρ, u, p) =





(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5
.

The solid is initially positioned at XS = 1.3001, and is hit by the shock at approxi-

mately t = .57s. We consider a broad range of mass choices for the point mass, from
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infinitesimally light (MS = 10−6) to extremely heavy (MS = 106), and a selection

in-between (MS ∈ {10−2, 10−1, .25, .5, .75, 1, 2.5, 7.5, 10, 102}). In the dynamic exam-

ples, where the solid is light enough (MS < 10), we check the convergence of the

position of the solid body and verify that in each case convergence is linear (see e.g.

Figure 5.14). We show some results in Figures 5.15, 5.16, 5.17 and 5.18.

For each choice in solid mass, we verify that no fluid mass moves across the

structure interface, and we also verify that within the computational domain no

momentum or energy is created or destroyed. In order to verify conservation of mass,

we compute

ML =
∑

xi<XS

ρiVi MR =
∑

xi>XS

ρiVi,

the total fluid masses to the left and right of the solid, respectively, and plot a time

history of the variation from initial value in Figure 5.13(c). The figure shows the time

history for MS = 1 which is representative of other mass choices, with the total left

fluid mass never varying more than 2×10−13 and right fluid mass never varying more

than 4× 10−14 for any selection of solid mass, within numerical round-off.

In order to compute the total error in momentum of the system, we note that until

the rarefaction and shock reach the domain boundaries the expected total momentum

introduced into the system by time tN is exactly .9 · tN , where .9 is the difference in

pressure values from the left and right boundary conditions. Then the total error in

conservation of momentum at time tN can be written as

∑

i

(ρu)Ni V
N
i +MSV

N
S − .9 · tN ,

and we show a time history of this error (for MS = 1) in Figure 5.13(a). This is

representative of other mass choices, with the total momentum of the system for any

mass choice never varying more than 1.2× 10−13.

As the velocity remains zero at the left and right boundaries of the domain, no

work is done and the total energy of the system should not vary from its initial value.
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We compute the total energy of the system as

∑

i

EiVi +
1

2
MSV

2
S

and show a time history of the difference of this value from its original value (for

MS = 1) in Figure 5.13(b). This is representative of other mass choices, with the

total energy of the system never varying more than 2.5× 10−13 from its initial value.

5.5.2 Stationary fluid damping a mass-spring system

In order to validate our results, we also consider the fluid-damped mass-spring system

introduced in [1], where a high pressure fluid acts as a damping force on a spring

fixed to the right side of the domain. The spring is of length 1 with spring coefficient

k = 107. The fluid state is initialized over x ∈ [0, 20] as

(ρ, u, p) =
(
4, 0, 106

)
,

and at t = 0 the spring is released from rest, resulting in over-damped behavior.

We show the position of the free end of the spring in Figure 5.20, and plot the fluid

pressure for a selection of times in Figure 5.19.

The convergence of the free end of the spring to the analytic solution at times

t = .0075s and t = .008 are shown in Figure 5.21, suggesting quadratic convergence

to the analytic solution. This represents a significant improvement over [31], which

only achieves convergence at a rate of 1.16 for this example, and is likely a result of the

pressure gradient and divergence operators being discretized to high order accuracy

as the result of carefully considering cut cells. Interestingly, unlike [31] no oscillations

are seen in the left-moving shock front that spontaneously forms at t = .0045s; this

is likely due to the improvements in the flow solver discussed in Sections 5.3.1 and

5.3.2.
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(a) Error in conservation of momentum of the
system, computed as

∑
i(ρu)

N
i V N

i + MSV N
S −

(.9 · tN ), where (.9 · tN ) is the increase in to-
tal momentum of the system at time tN due to
pressure differences at the boundary.

(b) Error in conservation of energy of the sys-
tem, computed as

∑
i EiVi +

1
2MSV 2

S . As the
velocity of the fluid at the boundary remains
zero, no work is done and the total energy of
the system is constant.

(c) Error in conservation of mass for the left (green) and right (red) sides of the domain.

Figure 5.13: Conservation error of a Sod shock tube interacting with a rigid point-
mass, with MS = 1. Note that the scale in the dependent axis is 10−14, showing that
all of the errors in conservation lie in the round-off error.
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(a) MS = .01 converges at 1.02. (b) MS = 1 converges at 1.01.

(c) MS = 5 converges at 1.07. (d) MS = 10 converges at 1.08.

Figure 5.14: Convergence rate for the position of a rigid point-mass, where error
is computed as the L2 error in position against the position from a highly refined
solution. The rate of convergence is computed as the slope of the best-fit line on the
log-log scale of error as a function of grid refinement, and this best-fit line is shown
in blue. This can be compared with a reference line of slope 1, shown as the purple
line.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 5.15: A Sod shock interacts with a rigid point-mass of mass 10−6, where the
blue vertical line represents the position of the solid; we show a snapshot of density
(a), pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid
momentum to the right of the solid is shown in green, and the momentum of the rigid
point-mass is the dark blue line. The sum of these quantities are shown in the purple
line, and the light blue line represents the expected momentum of the system based
on the pressure difference at the boundary—note that these lines coincide exactly.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 5.16: A Sod shock interacts with a rigid point-mass of mass 10−1, where the
blue vertical line represents the position of the solid; we show a snapshot of density
(a), pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid
momentum to the right of the solid is shown in green, and the momentum of the rigid
point-mass is the dark blue line. The sum of these quantities are shown in the purple
line, and the light blue line represents the expected momentum of the system based
on the pressure difference at the boundary—note that these lines coincide exactly.



CHAPTER 5. THIN-SHELL CONSERVATIVE FSI 173

(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 5.17: A Sod shock interacts with a rigid point-mass of mass 1, where the blue
vertical line represents the position of the solid; we show a snapshot of density (a),
pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid
momentum to the right of the solid is shown in green, and the momentum of the rigid
point-mass is the dark blue line. The sum of these quantities are shown in the purple
line, and the light blue line represents the expected momentum of the system based
on the pressure difference at the boundary—note that these lines coincide exactly.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 5.18: A Sod shock interacts with a rigid point-mass of mass 106, where the blue
vertical line represents the position of the solid; we show a snapshot of density (a),
pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid
momentum to the right of the solid is shown in green, and the momentum of the rigid
point-mass is the dark blue line. The sum of these quantities are shown in the purple
line, and the light blue line represents the expected momentum of the system based
on the pressure difference at the boundary—note that these lines coincide exactly.
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(a) t = 0s (b) t = .0015s

(c) t = .003s (d) t = .0045s

(e) t = .0075s (f) t = .01s

Figure 5.19: Pressure of the flow field for Section 5.5.2, for a selection of times.
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Figure 5.20: Position of the free end of the spring for Section 5.5.2, as a function of
time.
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(a) t = .0075s with a best-fit convergence of
2.12.

(b) t = .008s with a best-fit convergence of 2.29.

Figure 5.21: Convergence of the free end of the spring to the analytic solution, for
Section 5.5.2. The rate of convergence is computed as the slope of the best-fit line
on the log-log scale, and this best-fit is shown above in blue. This can be compared
with a reference line of slope 1 (representing linear convergence), shown as the purple
line, and a reference line of slope 2 (representing quadratic convergence), shown as
the brown line.
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5.5.3 Two-dimensional examples

We consider a variety of solid bodies submerged in an ideal gas, with initial conditions

specified by

(ρ, u, v, p) =






(
5.4, 209 , 0,

31
3

)
x ≤ xs

(1.4, 0, 0, 1) x > xs

where the initial location xs of a Mach 3 rightward-moving shock varies per example.

For each example involving a dynamic moving structure we compute the convergence

of the center of that structure with respect to a high-resolution simulation via its L2

error. The resulting errors are plotted as a function of grid refinement on a log-log

scale in Figure 5.22 and the line of best fit is computed and shown as a blue line.

The slope of this line gives the convergence rate and can be compared against a line

of slope 1 (shown in purple), which is representative of the behavior of a linearly

converging solution.

Leakproof validation with an infinite-mass rigid thin shell

The discontinuity is initialized at xs = .475, and reflects off of an infinitesimally thin,

slanted rigid body that separates two regions of the flow. The body is assigned an

infinite mass (by setting M−1
S = 0), and so the fluid to the right of the body (in ΩR)

remains quiescent. We examine the total material to the right of the body, calculating

∑

i∈ΩR

φ̂iVi.

At t = 0, the mass in ΩR is .112, with .2 total energy and no momentum, and over

the course of the simulation these terms vary by less than 10−18.

Figures 5.23 and 5.24 show the time evolution of the flow field for pressure and

density, respectively. When the shock initially makes contact with the rigid body the

shock reflects, and as it nears the funnel point of the channel it forms a Mach stem

along the top edge of the channel that travels to the left. A similar feature begins to

form along the rigid body, but is quickly overtaken by the reflected shock front.
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Leakproof validation with a constrained deforming thin shell

A thin deforming shell separates the channel into two regions, and the planar shock

is initially at xs = .475. The thin deforming shell is comprised of 21 line segments, 2

constrained nodes and 20 unconstrained point masses. Each dynamic node is assigned

a mass of .0476, and the top and bottom nodes are fixed to the walls by assigning

them an infinite mass (by setting M−1
S = 0), ensuring that they do not move. The

nodes are connected together by springs with a stiffness of k = 15 whose initial

configuration dictates their rest length.

Figures 5.25 and 5.26 show the time evolution of pressure and density. The shock

reflects off of the structure and causes it to buckle to the right. As the shell moves

to the right a region of low mass and pressure gradually forms to its left as seen at

t = .16s. The constraints fix the two ends to the walls of the channel, and at t = .2s

these constraints cease the rightward-motion of the shell. As the solid structure slows,

a strong pressure and mass spike forms to its left, while a corresponding mass and

pressure vacuum begin to form to its right.

The position of the center-of-mass of the deforming body converges at a rate

of 1.471, shown in Figure 5.22(a). The super-linear convergence is likely aided by

the constrained nodes, whose influence does not change under grid refinement. We

verify that the mass to the right of the deforming plate is non-changing, and the

mass does not change (up to numerical round-off) from 0.13972. Unlike the previous

example, however, the momentum and energy of ΩR do change (as these quantities

appropriately transfer across the solid structure).

Asymmetric shock reflection off a rigid cylinder

Similar to [31], we consider a rigid cylinder of radius .05, initially positioned at

(.15, .06) with density 10.77. The shock is initially positioned at xs = .08 and asym-

metrically reflects off of the cylinder and walls. This asymmetry imparts lift on the

cylinder, driving it up as it travels to the right. Under grid refinement the L2 error

of the position of its center converges at a rate of .962, shown in Figure 5.22(b), and

the flow field converges as shown in Figure 5.27. The time evolution is shown in
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Figures 5.28 and 5.29, for pressure and density respectively.

Asymmetric shock reflection off a thin rigid shell

The cylinder from Section 5.5.3 is hollowed out and filled with a dense fluid specified

by

(ρ, u, v, p) =

(
31

3
, 0, 0,

31

3

)

whose density and pressure are significantly higher than that of the pre-shock state.

The asymmetric reflection still imparts lift on the cylinder, but the motion is delayed

until the shock inside the solid hits the far wall of the cylinder. The internal fluid

motion causes the cylinder first to delay any rightward motion, then (when the internal

shock hits the right boundary at t = 1s) jump to the right and up. The time evolution

of pressure and density are shown in Figures 5.30 and 5.31, respectively. Under grid

resolution, the position of the center of the cylinder converges at a rate of 1.204,

shown in Figure 5.22(c), and the flow field converges as shown in Figure 5.32. The

total fluid state inside the hollow cylinder is shown in Figure 5.33; note that the total

mass of fluid inside the cylinder does not change. The momentum and energy are

more interesting, exchanging information with the structure.

Planar shock interacting with a constrained, immersed deforming thin

shell

In this example, a thin deforming shell is placed at x = .5 of length .5, and the planar

shock is initially located at xs = .475. The thin deforming shell is comprised of 21

line segments, 2 constrained nodes and 20 unconstrained point masses. Each dynamic

node is assigned a mass of .0952, and the top and bottom nodes are assigned an infinite

mass (by setting M−1
S = 0), ensuring that they do not move. The nodes are connected

together by springs with a stiffness of k = 10 and whose initial configuration dictates

their rest length.

The shock reflects off of the deforming body and causes the deforming shell to

buckle to the right, while rarefaction fans form around the constrained nodes as flow

passes by. As the deforming body reaches its right-most location and bends back a
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second, weaker shock pushes out and to the left and forming a vacuum behind the thin

shell. Interesting vorticial structures start to form behind the thin shell, most easily

seen near x = .75 at t = .35s in Figure 5.34 and Figure 5.35. Under grid refinement

(shown in Figure 5.36), note the regime change from laminar flow to separating flow.

This is a result of artificial viscosity vanishing under grid refinement and simulating

inviscid flows; and so as the grid becomes more refined the observed Reynolds number

goes up.

The position of the center-of-mass of the deforming body converges at a rate of

1.342, shown in Figure 5.22(d), and the flow field converges as shown in Figure 5.36.

This is likely aided by the constrained nodes, whose influence does not change under

refinement. No material flows through the thin solid structure.
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(a) Example from Section 5.5.3 converges at a
rate of 1.471.

(b) Example from Section 5.5.3 converges at a
rate of 0.962.

(c) Example from Section 5.5.3 converges at a
rate of 1.204.

(d) Example from Section 5.5.3 converges at a
rate of 1.342.

Figure 5.22: Convergence rate for the center of the dynamic structure is computed
using the L2 error in position against the position from a highly refined solution. The
rate of convergence is computed as the slope of the best-fit line on the log-log scale of
the L2 error as a function of grid refinement, and this best-fit line is shown in blue.
This can be compared with a reference line of slope 1, shown in purple.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 5.23: Time evolution of density in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 5.24: Time evolution of pressure in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 5.25: Time evolution of density in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 5.26: Time evolution of pressure in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 5.27: Grid convergence of the example described in Section 5.5.3, at time
t = .21s.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.28: Time evolution of density in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.29: Time evolution of pressure in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.30: Time evolution of density in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.31: Time evolution of pressure in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 5.32: Grid convergence of the example described in Section 5.5.3, at time
t = .21s.
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(a) Time evolution of mass error from the initial
configuration.

(b) Time evolution of x-axis fluid momentum.

(c) Time evolution of y-axis fluid momentum. (d) Time evolution of total fluid energy.

Figure 5.33: Time evolution of conserved material inside the hollow rigid cylinder
from Section 5.5.3. In (a), we show the time history of the error in total mass inside
the cylinder, while (b), (c) and (d) show time history of fluid momentum and energy
inside the cylinder. Note that the scale in the dependent axis of (a) is 10−16, showing
that the errors in conservation lie well within round-off error.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.34: Time evolution of density in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 5.35: Time evolution of pressure in the example described in Section 5.5.3, on
a 2560× 512 grid.
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(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 5.36: Grid convergence of the example described in Section 5.5.3, at time
t = .21s.
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5.6 Conclusions and future work

We have presented a fully conservative high resolution method for the simulation

of two-way coupled fluid-structure phenomena. The method uses cut cells to track

partial cell volumes, but requires no new time step restrictions to remain stable. Fur-

thermore, it is robust to high fluid density to solid mass ratios and requires no special

treatment for swept or uncovered cells. It is also collision-aware and therefore suit-

able for thin, impermeable solid structures separating disparate fluids. The resulting

monolithic implicit system is symmetric positive-definite, and well-conditioned.

There are several interesting avenues of future work that we believe are worth ex-

ploring. The advection scheme drops to first order accuracy near the fluid-structure

interface, introducing numerical error into the flow field, which may be mitigated by

higher order accurate conservative semi-Lagrangian methods. One potential candi-

date would be the MacCormack method of [90]. The hybrid flux formulation also

opens up some interesting possibilities, such as treating the flux region of the flow

with a fully explicit method (i.e. fully explicit in the pressure as well) and enforcing

pressure boundary conditions at the boundary, significantly reducing the fluid degrees

of freedom of the coupled implicit solver. Moreover this would increase the accuracy

in the flux-based region.

The implicit system also has some directions worth pursuing, such as the better

treatment of slip boundary conditions within the solve by enforcing velocity compati-

bility at the structure interface, rather than at cell faces. For example in the implicit

update, rather than lumping cut cell volumes into neighboring cells and enforcing

compatibility through fluid grid cell faces (which causes geometric errors to appear

in the flow due to the “stair-stepping” of the interface), one might consider enforc-

ing compatibility on the structural interface directly, treating cut cells and partial

volumes as additional degrees of freedom.
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