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Abstract

We propose a novel high resolution conservative advection scheme that is suitable for thin, embedded moving
solid structures. The scheme works by coupling together a high order flux-based method with a conservative
semi-Lagrangian solver that is similar in spirit to that of [26], but modified to treat the cut cells and partial
volumes that arise near a thin solid structure. The conservative semi-Lagrangian scheme is unconditionally
stable, and so unlike previous methods no cell merging is required to compensate for the small cell volumes
that arise. Furthermore, as the semi-Lagrangian scheme works via tracing characteristic curves, no special
treatment is required either to enforce non-penetration through thin, moving solid structures, or to populate
swept or uncovered degrees of freedom. For the flux-based solver, we use finite-difference ENO with Lax-
Friedrich’s diffusion (although any flux-based scheme works), and in doing so we found that a modification
to the diffusion calculation leads to improved stability in its third order accurate variant. We integrate
this novel hybrid advection scheme into a semi-implicit compressible flow solver, and modify the implicit
pressure solver to work with cells of variable size. In addition, we propose an improvement to the semi-
implicit compressible flow solver via a new method for computing a post-advected pressure. Finally, this
hybrid conservative advection scheme is integrated into a semi-implicit fluid-structure solver, and a number
of one-dimensional and two-dimensional examples are considered—in particular, showing that we can handle
thin solid structures moving through the grid in a fully conservative manner, preventing fluid from leaking
from one side of the structure to the other and without the need for cell merging or other special treatment
of cut cells and partial volumes.

1. Introduction

The Direct Numerical Simulation (DNS) of fluid-structure interactions has recently received significant
attention. Many of these works concern themselves with fluid flow in the incompressible flow regime, see for
example [8, 22] and the references within, but researchers are increasingly giving attention to the two-way
coupled interactions that arise in compressible flows, see for example [4, 17, 9]. If one desires to use a state-
of-the-art Eulerian method on the fluid flow, and a state-of-the-art Lagrangian method for the structure
solver, then this requires a numerical method for coupling these two solvers together. Fluid-based forces
need to be transferred to the solid structure, and position and velocity-based boundary conditions must be
applied to the fluid based on the current location and movement of the solid structure. One of the primary
research areas in solid-fluid coupling concerns the stability of the numerical methods for coupling and is
essentially focused on the feedback loop where pressure is applied to the solid, the solid structure reacts
and deforms, and subsequently imposes position and velocity-based boundary conditions on the fluid. While
the most straightforward approach is simply to treat the coupling in an explicit way, called a partitioned
method [49, 41, 10], researchers have focused quite a bit of attention on so-called monolithic methods that
employ higher degrees of implicit coupling [42, 14], in order to stabilize parts or all of this feedback loop.
Another important issue regards the modifications that the Eulerian method requires to treat cells cut by
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the solid structure as well as those that are covered or uncovered as the structure sweeps across the Eulerian
grid—especially in regards to stability and conservation. A common approach for treating these issues on
the Eulerian grid is to fill the cells that are covered or partially covered by the solid structure with ghost
values of some type, and then proceed in the standard way ignoring the solid all-together. This alleviates
stability restrictions for cut cells, automatically creates new fluid in uncovered cells, and has been theme of
the approach for the ghost fluid method [11] and the immersed boundary method (see [40] and the references
therein, including [38, 39]). The fluid placed in these ghost cells must include the added mass effect of the
solid, i.e. if the solid is heavier or lighter than the surrounding fluid, the ghost cells must properly represent
that mass difference. The added mass can be accounted for in thin solid structures as well (see for example
[50]), simply by adding that mass to the fluid cells that contain the solid structure. Whereas cut cell methods
overcome stability restrictions for the cut cells, they do not maintain either conservation nor the ability for
the fluid on one side of the structure to remain on that side, i.e. the fluid can leak across to the other side of
the structure. In order to address these concerns, authors have focused on cut cell methods, see for example
[16, 17] and the references therein. The main issue with these methods is in the treatment of small cell
volumes, which can impose additional time step restrictions on the flow solver if special techniques such as
cell merging near the structure interface are not used. Furthermore these methods can become extremely
complex if the solid structure is sweeping across the grid. In fact, most approaches to treating covering and
uncovering of cells are non-conservative, and even then there can be issues—for example, [45] pointed out
that this can cause pressure oscillations in incompressible flows. Generally speaking uncovered cells need to
be replaced with a valid value, and one can do this with any number of methods that range from simply
interpolating from nearby neighbors to using upwind information to populate these cells, see for example
[28, 27, 47]. Our semi-Lagrangian approach also uses upwind information to fill uncovered cells, but with
the aide of [26] more readily lends itself to a fully conservative approach than does a flux-based method.

We propose a novel treatment for cut cells and partial cell volumes near the structure interface. Unlike
previous methods, this approach does not rely on cell merging to alleviate the time step restriction; instead
we employ a conservative semi-Lagrangian scheme, similar in spirit to [26]. We make two major modifications
to this method. First, the method is modified to support non-uniform grids, noting that care must be taken
when a characteristic emanating from a large grid cell lands in the midsts of many small grid cells, and vice
versa. Second, since the semi-Lagrangian method is low order accurate, we hybridize it with a high order
accurate flux-based ENO method [46] (although any flux-based scheme works) so that high resolution can
be obtained throughout the flow with the semi-Lagrangian method only being applied near the thin solid
interface. As the semi-Lagrangian solver works by tracing along characteristic curves, we can use continuous
collision-detection [7, 15] to guarantee that fluid does not penetrate into a volumetric solid or cross over from
one side to the other on a thin solid. This works even when the solid is moving and is under-resolved by the
grid. Notably, the resulting method requires no special treatment for swept or uncovered cells.

Using the semi-Lagrangian method to handle cells near the structure interface is similar in spirit to
both volume of fluid (VOF) [20] and arbitrary Lagrange-Eulerian (ALE) [19] methods, which both explicitly
move information along characteristics in a Lagrangian manner and both explicitly conserve the material.
Although some versions of the volume of fluid scheme intersect flux-swept volumes with the volume fraction,
others actually mesh up the volume fraction and move it through the grid in a Lagrangian fashion. If one
treats each vertex of the meshed-up VOF polygon as a Lagrangian particle, continuous collision-detection
can be applied to it in the same fashion as we do for our semi-Lagrangian rays. In this manner one can
achieve conservation, stability and also prevent material from interpenetrating volumetric solids or crossing
over thin solids. Afterwards, this advected polygon of volume needs to be deposited and stored on the grid
so that it can be remeshed into the VOF representation at the next time step. The issue here comes in the
representation; that is, if a cell is cut by a thin structure one needs to represent that volume fraction on
the grid in a way that does not cross over the structure. The semi-Lagrangian method stores information at
grid points (cell centers in our implementation) and therefore overcomes this, but a volume of fluid method
would need to reconstruct the geometry in such a way that cuts the cells across the interface designated
by the solid boundary. Similarly ALE methods push along the vertices of their mesh in a manner similar
to both the VOF and semi-Lagrangian methods, and thus those vertices can be collided with the structure.
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Again, one of the more complex aspects of this is in keeping the structure for the ALE mesh commensurate
with the solid structure interface. Moreover, another issue with the ALE method is that pushing nodes
around in a Lagrangian fashion and colliding them with the structure interface can result in inversion, and
unless one wants to untangle the ALE mesh [48] and attempt to fit it to the solid structure, a remapping
method needs to be employed where the material is dropped back down onto some Eulerian mesh and then
remeshed in a way that fits the structure. In general we believe that both VOF and ALE methods could be
applied in a manner similar to what we propose for our method, as long as one could work out the details for
hybridization with the flux-based scheme and for redepositing the material near the solid interface onto an
Eulerian grid. However, we feel that the conservative semi-Lagrangian approach of [26] is a very simple and
straight-forward way to do this. We refer the interested reader to the following relevant VOF [18, 37, 2, 3, 30]
and ALE papers [23, 34, 33, 35, 36, 5].

In order to capture the fluid-structure interactions we employ the flux-split compressible coupling method-
ology of [14], where the fluid flux terms are split into advective terms and pressure terms. The linearly
degenerate advective terms are solved independently of the structure after which an implicit, monolithic
coupled system is solved for the fluid pressures, the fluid-structure impulses and the structure velocity de-
grees of freedom. By treating the interactions implicitly, no new time step restrictions arise as a result of high
density-to-mass ratios and we are free to work both with infinitesimally light structures as well as extremely
heavy ones. We make two modifications to this method. The first modification addresses the fact that the
original paper used a rasterized version of the solid structure, and so each grid cell is either completely full
or completely empty of fluid. Second, we propose some modifications to the flux-splitting method of [24]
that are primarily concerned with a better computation of what they refer to as the advected pressure.

The remainder of this paper is organized as follows; in Section 2 the conservative semi-Lagrangian ad-
vection scheme of [26] is extended to work with arbitrarily-sized control volumes, and then coupled together
with a high order accurate flux-based solver in order to obtain a high resolution hybrid conservative advec-
tion scheme. Section 3 incorporates this hybrid conservative advection scheme together with the flux-split
Eulerian flow solver of [24], makes note of a few algorithmic modifications that lead to better performance
at a reduced computational cost, and alters the implicit pressure solve to account for non-uniformly sized
control volumes. Section 4 couples together this Eulerian flow solver with the implicit fluid-structure inter-
action solver of [14], demonstrating how the hybrid advection flow solver can be used to treat cut cells and
partial volumes. This section also covers how the volumetric conservative semi-Lagrangian advection scheme
is modified to both guarantee collision-free advection near thin, moving solid structures, as well as maintain
high resolution temporal accuracy in the flux-based region of the flow field. In Section 5 we demonstrate the
resulting two-way coupled method for a variety of one-dimensional and two-dimensional examples.
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2. Conservative semi-Lagrangian advection

We begin with a short review of [26] to lay the groundwork for conservative semi-Lagrangian advection
before proposing our novel extension to non-uniform grids in Section 2.1, and then hybridizing the result-
ing method with a traditional flux-based method in Section 2.3. A traditional semi-Lagrangian scheme
approximates

φt + ~u · ∇φ = 0, (1)

where φ is some passively advected scalar through a velocity field ~u, by looking backward to a sample point
x− along characteristic lines and then interpolating to this sample point from nearby grid points. This can
be written as

φn+1
j = φ

(
xj , t

n+1
)

= φ
(
x−j , t

n
)

=
∑
i

wijφ (xi, t
n) (2)

where wij are interpolation weights from some neighborhood of cells located at xi to the sample point x−j
(that is, x−j =

∑
i wijxi). A first order accurate approximation may for example compute x−j = xj −∆t~unj ,

and then use bi-linear (or tri-linear, in three spatial dimensions) interpolation to compute φ
(
x−j , t

n
)
; never

explicitly computing wij .
In [26] this scheme is modified to instead solve the conservative form,

φ̂t +∇ · (φ̂~u) = 0, (3)

which can be derived by multiplying Equation (1) through by conservation of mass and setting φ̂ = ρφ
(where ρ is density). They define σi =

∑
j wij to be the fractional contribution that the time tn data in cell

i gives to the time tn+1 solution, and note that in order to remain conservative it is this term—rather than
the sum over i—that should equal to one. That is, a given cell i must contribute all of its time tn data to
the time tn+1 solution; no more, and no less.

In order to strictly enforce conservation while remaining consistent with Equation (3), [26] computes
modified weights ŵij such that

∑
j ŵij = 1 for all cells i. This is done in three stages, beginning with a

traditional semi-Lagrangian step. Rather than implicitly computing wij by way of computing φ
(
x−j , t

n
)
,

however, these weights are computed directly and saved. Next, cells that contribute too much to the time
tn+1 solution (i.e. σi > 1) are clamped from above, and ŵij = wij/σi for these cells. Finally, cells that
have any remaining material (i.e. σi < 1) have their remaining material pushed forward along characteristic
curves. This is done through a second semi-Lagrangian step, this time advecting a point xi forward along
its characteristic curve to a sample point x+

i ; in a first order accurate method, for example, x+
i could be

computed as xi + ∆t~uni . Forward-advected weights fij are then computed as the interpolation weights to
x+
i over a neighborhood of cells j (such that x+

i =
∑
j fijxj). As

∑
j fij = 1, the remaining material is fully

distributed to the time tn+1 solution if, for these cells, ŵij = wij + (1− σi)fij .
To summarize, they compute modified weights

ŵij =

{
wij/σi σi > 1

wij + (1− σi)fij σi ≤ 1
(4)

and update φ̂n+1
j =

∑
i ŵij φ̂

n
i , to solve Equation (3). By moving data from time tn to time tn+1 only along

characteristic lines, they have consistency with Equation (3), and by enforcing that
∑
j ŵij = 1 they attain

numerical conservation. A key point is that Equation (3) is governed by the linearly degenerate eigenvalue u,
and thus can also be used for the linearly degenerate velocity eigenvalue in the compressible flow equations.
The interested reader is encouraged to read [25], which explores the conservative semi-Lagrangian approach in
some detail, showing the benefits of using the conservative form over Equation (1) even for an incompressible
flow.
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(a) The control volume for a cell B is advected back-
ward in time along its characteristic curve, and its over-
lap onto the fixed background grid is computed as wjB =

‖Ω−
B ∩ Ωj‖. The resulting weights for this particular ex-

ample are w5B = .396, w6B = 1.00, w7B = .604, w9B =
.396, w10B = 1.00, w11B = .604. Note that these weights
sum to four, which is the size of the original control vol-
ume ‖ΩB‖ relative to the size of the smaller control vol-
umes.

(b) The control volume for a cell A is advected forward
in time along its characteristic curve, and its overlap
onto the fixed background grid is computed as fAj =

‖Ω+
A∩Ωj‖/‖ΩA‖. The resulting weights for this particular

example are fA2 = .034, fA3 = .039, fA4 = .006, fA6 =
.212, fA7 = .250, fA8 = .037, fA10 = .179, fA11 =
.211, fA12 = .032. Note that unlike wij these weights
sum to one.

Figure 1: Advected control volumes are moved backward and forward in space along its characteristic curve, and then distributed
among control volumes in the fixed grid. Consider the examples above, where a large control volume four times the size of the
smaller cells is advected into a region of smaller grid cells.

2.1. Non-uniform grids
We propose a modified version of this scheme that is suitable for non-uniform grids. In particular, we do

not compute the backward-advected weights wij and forward-advected weights fij through an interpolation
kernel (although, in the case of a uniform grid, this method does degenerate back to that of a bi-linear
interpolation kernel). Instead these weights are computed as the overlap between a control volume that
moves along characteristic lines and control volumes that remain fixed on a background grid. For brevity,
we define a volume measure

‖Ω‖ =

∫
Ω

dx.

When computing wij , the control volume for cell j, Ωj , is moved backward in time along characteristic
curves by a distance |~u|∆t. This translated volume Ω−j is then distributed among all overlapping control
volumes from the background grid using our volume measure ‖ · ‖. These backward-advected weights are
then given as wij = ‖Ωi ∩ Ω−j ‖, which is illustrated graphically for a simple example in Figure 1(a). These
can be thought of as volume fractions of material moving from cell i to cell j. One could consider a control
volume Ω−j that dilates by (∇ · ~u)∆t as it moves along the characteristic curves, but we prefer the simplicity
of a simple translating n-dimensional cube at the cost of some O(∆x) numerical errors. Note that a typical
semi-Lagrangian method also has no mechanism to account for this dilation and therefore would possess
similar errors. Those who pursue the semi-Lagrangian approach through a Lagrangian plus remap-style
method can account for dilation and volume changes, and although significantly more complex than our
approach, they bear some similarities; see for example [6] and the references therein.

For conservation we are interested in distributing all of the time tn volume of material of cell i to the
time tn+1 solution, or equivalently ensuring that the sum of volume fractions

∑
j wij is equal to ‖Ωi‖. In

order to enforce this, we redefine σi =
∑
j wij as the total volume of material entering the time tn+1 solution

from the time tn cell i, and use this term in three stages as before.
If σi > ‖Ωi‖ then the cell is contributing too much volume of material to the time tn+1 solution, and

all corresponding weights are scaled down accordingly by ‖Ωi‖/σi. This enforces that no new material is
created. Cells not contributing enough to the tn+1 solution (i.e. σi < ‖Ωi‖) have their remaining volume
advected forward along characteristic curves. This is done through a second advection step, moving the
control volume for a given cell i forward in time along characteristic curves. This translated control volume
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Figure 2: A non-uniform one-dimensional spatial grid, with flux boundaries shown as red vertical lines and cell-centered degrees
of freedom as blue points. In the depicted grid, the smallest cell is of size ∆xf = .0625, while the largest cell is of size ∆xc = .5,
8× larger than the smallest cells. When the grid resolution r is specified, we set ∆xc = 5/r and scale the more refined regions
appropriately.

Ω+
i is distributed among control volumes on a fixed background grid, and forward-advected weights are

computed and normalized as fij = ‖Ω+
i ∩ Ωj‖/‖Ω+

i ‖; this is illustrated graphically in Figure 1(b). The
remaining volume ‖Ωi‖−σi is distributed using these forward-advected weights, exploiting that

∑
j fij = 1.

To summarize, we solve Equation (3) on an arbitrary grid by computing backward-advected weights
wij = ‖Ωi ∩ Ω−j ‖ and forward-advected weights fij = ‖Ω+

i ∩ Ωj‖/‖Ω+
i ‖ as necessary, and then compute

modified weights

ŵij =

{
(‖Ωi‖/σi)wij σi > ‖Ωi‖
wij + (‖Ωi‖ − σi) fij σi ≤ ‖Ωi‖.

(5)

The final update can then be written as

φ̂n+1
j =

∑
i

φ̂ni ŵij
‖Ωj‖

. (6)

2.2. Examples
Equation (3) is solved for a pair of examples in one spatial dimension. The first is a sine-wave bump

advected through a constant velocity field with u = 1, with initial state specified as

φ̂(x) =

{
1
2

(
1 + sin

[
4π(x− 3

8 )
])

x ∈
(

1
4 ,

3
4

)
0 otherwise

.

Figures 3(a) and 3(b) compare results at time t = 4s between the volumetric conservative semi-Lagrangian
advection and first order accurate ENO-LLF schemes on a uniform grid. In Figures 3(c) and 3(d) a non-
uniform grid (shown in Figure 2) is utilized, and in Figure 3(e) the conservative semi-Lagrangian advection
scheme is used with an effective CFL number of α = 4 (i.e. ∆t = α∆x/|u|, well outside of the stability regime
of a flux-based scheme) in order to demonstrate its unconditional stability. In all of these simulations, the
results are qualitatively similar and the peak converges to its analytic solution at a rate of approximately
.75.

We also consider a square wave being advected through a divergent velocity field with u(x) = sin
(
π
5x
)
.

In Figures 4(a) and 4(b) the results at time t = 5s are compared between the volumetric conservative
semi-Lagrangian advection and first order accurate ENO-LLF schemes, on a uniform grid. In Figures 3(c)
and 3(d) a non-uniform grid (shown in Figure 2) is utilized, and in Figure 3(e) the conservative semi-
Lagrangian advection scheme is used with an effective CFL number of α = 4 in order to again demonstrate
its unconditional stability. We compute the analytic solution via the method of characteristics, noting that
the total material between two characteristic curves does not change.

2.3. Hybrid flux / conservative semi-Lagrangian coupling
The conservative semi-Lagrangian advection scheme is unconditionally stable, which makes it ideal for

regions of the flow field where small or irregular grid cells are necessary to resolve small-scale geometric
detail. However, the method is limited to first order accuracy, and so is less desirable as a solver for the bulk
of the flow. We therefore consider a hybrid formulation where the conservative semi-Lagrangian scheme is
coupled with a more traditional high order accurate flux-based scheme. This hybrid formulation works by
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(a) First order accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(b) Conservative semi-Lagrangian scheme on a uniform grid, with a CFL number α = .5.

(c) First order accurate ENO-LLF on the non-uniform grid shown in Figure 2, with a CFL number α = .5.

(d) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 2, with a CFL number α = .5.

(e) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 2, with a CFL number α = .5 taken with
respect only to the coarse grid cells (and so the effective CFL number is 4).

Figure 3: A sinusoidal wave is advected through a constant velocity field, u = 1, using a variety of spatial discretizations and
grids, with TVD-RK3 time integration. Results are shown at t = 4s.
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(a) First order accurate ENO-LLF on a uniform grid, with a CFL number α = .5.

(b) Conservative semi-Lagrangian scheme on a uniform grid, with a CFL number α = .5.

(c) First order accurate ENO-LLF on the non-uniform grid shown in Figure 2, with a CFL number α = .5.

(d) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 2, with a CFL number α = .5.

(e) Conservative semi-Lagrangian scheme on the non-uniform grid shown in Figure 2, with a CFL number α = .5 taken with
respect only to the coarse grid cells (and so the effective CFL number is 4).

Figure 4: A square wave is advected through a divergent velocity field, u(x) = sin
(
π
5
x
)
using a variety of spatial discretizations

and grids, with TVD-RK3 time integration. Results are shown at t = 5s.
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imposing fluxes as boundary conditions to the conservative semi-Lagrangian solver, and so can be used with
any flux-based method.

The flow field is partitioned into two regions; a flux region, where the flow is updated entirely by fluxes
computed on control volume boundaries, and a semi-Lagrangian region, where the flow is updated using
the conservative semi-Lagrangian scheme. As flux-based schemes already prescribe material transport across
control volume boundaries, we use the fluxes on faces that separate the two flow regions in order to determine
how they interact. These boundary fluxes are computed using information from both sides of the interface,
and completely determine how the two regions interact.

In the semi-Lagrangian region, the boundary flux must be accounted for in such a way that the method
remains numerically conservative in its clamping and forward-advection stages. Consider a hybrid control
volume boundary that separates a flux-region cell i and a semi-Lagrangian region cell j, where the flux ~Fij
is imposed as a boundary condition on the semi-Lagrangian region. If the area-weighted surface normal of
this control volume boundary is d ~Aij (where the normal points into the semi-Lagrangian region), then the
quantity of φ̂ moving across the hybrid control volume boundary can be computed from the fluxes as

φ̂ni ŵij = ∆t ~Fij · d ~Aij or φ̂nj ŵji = −∆t ~Fij · d ~Aij

This material enters the semi-Lagrangian cell if ~uf · ~Aij ≥ 0, and leaves the cell otherwise, where ~uf is the
velocity at the flux face.

When incorporating the boundary conditions into the volumetric conservative semi-Lagrangian scheme,
one might consider recovering ŵij by dividing through by φ̂ni (or φ̂nj ). However, if φ̂ni = 0 (as is the case
for our one-dimensional advection examples) then this is infeasible. Instead we modify Equations (5) and
(6), absorbing the φ̂ni term into the ŵij term as w̃ij . In the previous version of these equations ŵij had
units of volume and was clamped against the volume of the cell, ‖Ωi‖. With this new approach we are
clamping φ̂ni ŵij , which represents the fluxed material, against the total material in cell i (after accounting
for boundary conditions).

The modified conservative semi-Lagrangian scheme accounts for boundary conditions in two ways. Hybrid
boundary fluxes pushing material into a semi-Lagrangian cell j are handled by adding in new material
weights w̃Fij = ∆t ~Fij · d ~Aij , which are set aside until the final stage of the update. Hybrid boundary
fluxes pulling material out of a semi-Lagrangian cell j are accounted for by subtracting off that material
(w̃jFi = −∆t ~Fij · d ~Aij) from the total amount of material in cell j, and so the remaining material in that
cell is Kj = φ̂nj ‖Ωj‖ −

∑
i w̃jFi

. Cells that do not lie adjacent to the hybrid boundary remain unmodified
and so the remaining material in that cell is simply Kj = φ̂nj ‖Ωj‖.

Next, the backward-cast weights wij are computed as discussed in Figure 1(a). We only look back
from cells in the semi-Lagrangian region and, as all of the material transport across the hybrid interface is
accounted for by the fluxes, we discard any weights wij where either cell i or cell j are not semi-Lagrangian
cells. These weights are then multiplied by φ̂, and we compare σ̂i = φ̂ni

∑
j wij with Ki. If |σ̂i| > |Ki|—that

is, if cell i gives too much material to the time tn+1 solution—then we scale the weights by Ki/σ̂i, setting
w̃ij = (Ki/σ̂i)φ̂

n
i wij for these cells. Note that, unlike before, we clamp the magnitude of the sum of the

weights. This is to properly account for the case where φ̂ni < 0.
If |σ̂i| < |Ki|—that is, the cell does not give sufficient material to the time tn+1 solution—then forward-

advected weights fij are computed. If fij carries material across the hybrid boundary then it is discarded,
and all remaining weights are scaled up accordingly (If there are no remaining weights then the remaining
material is simply left in that cell, i.e. by setting fii = 1). These forward-advected weights are used to carry
any remaining material forward as before, giving final weights for these cells as w̃ij = φ̂ni wij + (Ki − σ̂i)f̃ij ,
where f̃ij are the scaled up fij weights that carry material to cells that are in the semi-Lagrangian region
at time tn+1 (i.e.

∑
j∈s-L f̃ij = 1).

To summarize, the hybrid scheme first computes fluxes within the flux region, and at the hybrid boundary
between the flux and semi-Lagrangian regions. The flux region is then updated using these flux values,
completing the update for these cells. At the hybrid boundary, we compute w̃Fij = ∆t ~Fij · d ~Aij and
w̃jFi = −∆t ~Fij · d ~Aij as discussed above. Hybrid boundaries that draw material out of the semi-Lagrangian
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Figure 5: In the hybrid advection scheme, near areas where the cell size changes, we drop the stencil width (and therefore the
order of accuracy) of the flux scheme to avoid crossing the refinement interface. In the one-dimensional example illustrated
here, the blue flux faces are solved using a third order accurate scheme. The red faces are solved with a second order accurate
scheme, while the green faces are computed with simple upwinding. The stencils for these faces are also illustrated, just to
show that they do not cross the refinement interface. The thick black fluid face represents the refinement boundary between the
larger cells on the left and the smaller cells on the right, and none of our first, second or third order accurate stencils cross that
boundary. One could update this flux with a first order accurate ENO scheme, similar to the stencils shown in green to obtain
what we refer to as a graded discretization near the refinement boundary. We instead use our conservative semi-Lagrangian
scheme on the cells to the left and right of this face, with their Kj ’s modified based on the neighboring first order fluxes shown
in green.

region are then used to modifyKj by
∑
i w̃jFi

. Backward-cast weights wij are computed for semi-Lagrangian
cells j, and any weights that cross the hybrid flux boundary are discarded. Forward-cast weights fij are
computed for any cells where |σ̂i| < |Ki|, and again any weights that cross the hybrid flux boundary are
discarded. The remaining forward-cast weights fij are scaled up to f̃ij such that

∑
j∈s-L f̃ij = 1, and the

material-weighted weights are

w̃ij =

{
(Ki/σ̂i)φ̂

n
i wij |σ̂i| > |Ki|

φ̂ni wij + (Ki − σ̂i) f̃ij |σ̂i| ≤ |Ki|.
(7)

Finally we update the cells in the semi-Lagrangian region as

φ̂n+1
j = ‖Ωj‖−1

[∑
i

w̃ij +
∑
i

w̃Fij

]
. (8)

As both the flux scheme and the conservative semi-Lagrangian scheme are conservative, the resulting hybrid
scheme is also fully conservative.

2.4. Examples
We noticed that, in the non-linear examples considered later in this paper, numerical artifacts manifest

when the order of accuracy of the flow solver drops dramatically between neighboring cell faces – these
include artificial reflected waves, kinks and overshoots. With this in mind, although the hybrid formulation
is general enough to support any flux-based scheme, we prefer a flux-based scheme with a variable-width
stencil over one that uses a fixed-width stencil such as WENO [29, 21]. That way, in the non-linear examples
we can “step down” the stencil width (and therefore order of accuracy) of the flow solver as it approaches a
hybrid flux boundary – see Figure 5. Unless otherwise stated we use ENO-LLF.

We return to the examples discussed in Section 2.2 on the non-uniform grid given in Figure 2, and utilize
the proposed hybrid scheme in order to employ a third order accurate ENO-LLF scheme away from the
refinement interfaces located at x = {1, 1.5, 2, 3, 3.5, 4}. Since these problems are linear the aforementioned
difficulties with numerical artifacts do not exist, and therefore for the sake of exposition we take a more ag-
gressive non-graded approach. The semi-Lagrangian scheme is only utilized on a lower-dimensional manifold
of the computational domain—that is, only 36 cells—and so the results are expected to be high resolution
in nature. Figures 6(b) and 6(d) show the results for the sine-wave and square-wave bumps respectively,
and indeed the convergence of the peak value of the solution is only slightly degraded from that of a third
order accurate ENO-LLF scheme on a uniform grid. The peak value of the sine-wave bump converges to
its analytic value at a rate of 1.98 (as compared to 2.56), while the peak value of the square-wave bump
converges to its analytic value at a rate of .63 (as compared to .57). Note that, for the square-wave, the
discontinuity located immediately to the right of the peak value negatively impacts convergence even for a
traditional scheme on a uniform grid.
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(a) Baseline sinusoidal wave advected through a constant velocity field computed using third order accurate ENO-LLF on a
uniform grid, with a CFL number α = .5.

(b) A sinusoidal wave advected through a constant velocity field, u = 1, to final time t = 4s.

(c) Baseline square wave advected through a divergent velocity field computed using third order accurate ENO-LLF on a
uniform grid, with a CFL number α = .5.

(d) A square wave advected through a divergent velocity field, u(x) = sin
(
π
5
x
)
, to final time t = 5s.

Figure 6: Conservative advection is solved on the non-uniform grid shown in Figure 2 using TVD-RK3 time integration and a
hybrid spatial discretization. The semi-Lagrangian regions are limited to a three-cell band near refinement interfaces, and the
bulk of the flow field is treated using third order accurate ENO-LLF.
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3. Semi-implicit compressible flow formulation

As demonstrated in [26], a conservative semi-Lagrangian advection scheme can be combined with the
implicit pressure solve of [24] to solve the compressible Euler equations. This first order accurate advection
scheme alleviates the time step restriction imposed by the bulk advection, resulting in a method which
imposes no time step restrictions for stability. The advection scheme tends to introduce significant numerical
dissipation throughout the flow, however, and was previously limited to uniform grids. We modify the method
of [24] and use our proposed modifications both for non-uniform grid refinement and hybrid advection.

Consider the Euler equations, given by ρ
ρ~u
E


t

+

 ∇ · ρ~u
∇ · (ρ~u⊗ ~u)
∇ · E~u

+

 0
∇p
∇ · p~u

 =

0
0
0

 (9)

where we have split the flux terms into an advection and non-advection part. The advection part is integrated
explicitly to give intermediate values ρ?, (ρ~u)? and E?, and since pressure does not affect the continuity
equation we can set ρn+1 = ρ?. The resulting momentum update equation is divided by ρn+1, giving

~un+1 = ~u? −∆t
∇pn+1

ρn+1
, (10)

and its divergence is taken to obtain

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇pn+1

ρn+1

)
. (11)

The pressure evolution equation (see [12]), which is given by

pt + ~u · ∇p = −ρc2∇ · ~u, (12)

is semi-discretized by fixing ∇ · ~u to time tn+1 through the time step and by treating advection terms
explicitly. Denoting the advected pressure field by pa = pn −∆t~u · ∇p gives

pn+1 = pa −∆tρc2∇ · ~un+1. (13)

Substituting this in to Equation (11) and rearranging gives

pn+1 −∆t2ρn(c2)n∇ ·
(
∇pn+1

ρn+1

)
= pa −∆tρn(c2)n∇ · ~u?, (14)

where we have fixed ρc2 to time tn. We compose the ρn(c2)n terms into a diagonal matrix P =
[
∆t2ρn(c2)n

]
and discretize the gradient and divergence operators, yielding[

P−1 +GT (ρ̂n+1)−1G
]
p̂n+1 = P−1p̂a +GT ~̂u?, (15)

where G is the discretized gradient operator, −GT the corresponding discretized divergence operator, the
pressures are scaled by ∆t (i.e. p̂ = p∆t), and ρ̂ and û represent variables interpolated to cell faces. This
implicit system is solved to obtain pn+1 at cell centers. These time tn+1 pressures are then applied in a
flux-based manner to the intermediate momentum and energy values to obtain time tn+1 quantities in a
discretely conservative manner, giving correct shock speeds. This is done as follows. Pressures are averaged
using a density weighting in order to compute the pressure at cell faces as

p̂i+1/2 =
ρip̂i+1 + ρi+1p̂i

ρi + ρi+1
(16)
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and face velocities at time tn+1 are computed by rewriting the momentum update using face-averaged
quantities as

ûn+1
i+1/2 = û?i+1/2 − ρ̂

−1
i+1/2Gi+1/2p̂

n+1, (17)

where Gi+1/2 is the row of G corresponding to face i + 1/2 and û?i+1/2 =
(ρu)?i +(ρu)?i+1

ρ?i +ρ?i+1
. The flux-based

implicit update then takes the form

(ρ~u)n+1
i = (ρ~u)?i −

p̂n+1
i+1/2 − p̂

n+1
i−1/2

∆x
, En+1

i = E?i −
p̂n+1
i+1/2û

n+1
i+1/2 − p̂

n+1
i−1/2û

n+1
i−1/2

∆x
. (18)

3.1. Computing the advected pressure
In previous work, pa = pn −∆t~u · ∇p was computed using Hamilton-Jacobi ENO [24]. When doing so

they noticed Gibbs phenomena near the shock front (which can be seen in the left column of Figure 7), and
in order to mitigate these oscillations a MAC grid-based ENO (or MENO) variant of ENO was introduced.
We do not use MENO in any of our examples; instead, we compute the advected pressure as

pa = p(ρ?, e?),

i.e. by using the equation of state directly on the post-advected flow-field. This appears to reduce oscillations
near the shock front – see the right hand column of Figure 7. The reduced oscillations may be due to pa
being more consistent with the advection step, although some Gibbs phenomena features still appear in the
momentum and energy, most likely due to the centrally differenced nature of the pressure update. This
variant method of computing pa appears to be beneficial in a number of our tests, but we did not extensively
experiment for example with highly non-linear equations of state. This approach is also more efficient, having
removed the Hamilton-Jacobi advection step.

3.2. Modified ENO-GLF scheme
In the higher spatial dimension examples considered later on in Section 5.3, we noticed that the third

order accurate ENO-GLF (that is, global Lax-Friedrich’s diffusion) scheme sometimes artificially cavitated
(with internal energy going negative) during the flux-based advection update. This occured at Mach stems
such as the one highlighted in Figure 8, and only for the third order accurate variant of ENO-GLF; first
and second order accurate variants of ENO-GLF do not cavitate. We believe that this is due to dispersive
errors in the flow field introduced by the Lax-Friedrich’s diffusion term, due to those terms being evaluated
for a higher order derivative than that of the flux gradient itself. Thus, when the dominant errors in the
evaluation of the flux are dissipative, the dominant errors in the Lax-Friedrich’s term are dispersive leading
to numerical difficulties (of course, this analysis only rigorously applies in the linear sense).

Through experimentation, we found that truncating the divided difference table for the Lax-Friedrich’s
term to that of a lower order polynomial appears to alleviate this numerical cavitation. That is, we compute
globally valid divided difference tables for F and φ̂ as

D1
iF = F(φ̂i) D1

i φ̂ = φ̂i

D2
i+1/2F =

D1
i+1F −D1

iF
2∆x

D2
i+1/2φ̂ =

D1
i+1φ̂−D1

i φ̂

2∆x

D3
iF =

D2
i+1/2F −D

2
i−1/2F

3∆x

where, unlike the traditional third order accurate variant, we prescribe D3
i φ̂ to be zero; this is equivalent

to fixing the degree of the polynomial approximating the diffusion term to be at most of order 2. The
left-upwinded and right-upwinded flux terms (F+

i+1/2 and F−i+1/2, respectively) are then computed using the
locally valid divided difference tables, which are given by

D1
i [F ± αφ̂] = D1

iF ± αD1
i φ̂, D2

i+1/2[F ± αφ̂] = D2
i+1/2F ± αD

2
i+1/2φ̂, and D3

i [F ± αφ̂] = D3
iF .
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(a) Density from HJ-ENO. (b) Density from pa = p(ρ?, e?).

(c) Momentum from HJ-ENO. (d) Momentum from pa = p(ρ?, e?).

(e) Internal energy from HJ-ENO. (f) Internal energy from pa = p(ρ?, e?).

Figure 7: A comparison of the impact of how pa is computed. On the left column a third order accurate Hamilton-Jacobi
ENO scheme is used to compute pa = pn − ∆t~un · ∇pn. On the right, the advected pressure is computed directly from the
post-advected fluid state ~U? – that is, pa = p(ρ?, e?). Both methods capture the shock location properly, by virtue of being
conservative, but the second approach appears to have significantly reduced overshoots at the shock front. Both solutions are
computed on uniform grids using TVD-RK3 time integration and standard third order accurate ENO-GLF to handle advection.
The CFL number α is .5, and results are shown for t = .25s.
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Figure 8: In this two-dimensional example (explored in further detail in Section 5.3), artificial cavitation occurs in the circled
region, behind a Mach stem, when the standard Lax-Friedrich’s third order accurate variant of ENO is used to compute ~U?.
Shown are isocontours for density for the example described in Section 5.3.5 at time t = .2s.

We designate this truncated diffusion version of ENO-GLF as ENO-GLFT. We compare ENO-GLFT with
the standard second order accurate variant of ENO-GLF in Figure 9 to show the impact of factoring in the
third order accurate terms for F but not the third order accurate diffusion term. The standard second order
accurate variant is shown in the left column, and ENO-GLFT is shown in the right column. There are no
significant differences in the rarefaction region, x ≤ .5, and minimal differences near the shock front near
x = .937. However, near the linearly degenerate contact discontinuity at x = .734 significant improvement
in accuracy can be seen. Although not shown, no discernible difference is seen in the pressure or velocity –
both of which are continuous at linearly degenerate contact discontinuities. The ENO-GLFT method also
compares well with standard third order accurate ENO-GLF, shown as the right-hand column of Figure 7.
The most noticeable difference appears at the shock front, where the overshoots for ρ and e are reduced
in magnitude as a result of this modification. This benefit is secondary, however, to the improved stability
for the examples discussed in Section 5.3. Using our modified variant to third order accurate ENO-GLF no
artificial cavitation occurs, unlike in the case where the standard third order accurate ENO-GLF is used.

3.3. Non-uniform grids
In order to write the momentum update for a dual cell, we begin by distributing each cell-centered mo-

mentum term evenly between their axis-appropriate left and right cell faces. That is, ρu is evenly distributed
to the x-axis cell faces and ρv to the y-axis cell faces. The momentum for an x-axis cell face can then be
written as

βi+1/2ûi+1/2 =
1

2
[Vi(ρu)i + Vi+1(ρu)i+1]

where û is the velocity component associated with the dual cell, V are the cell volumes, and β is the effective
mass of the dual cell computed as the sum of the masses related to each component of momentum, i.e.
βi+1/2 = 1

2 (Viρi + Vi+1ρi+1). Note that if there is a Neumann boundary on a cell face, only the density
and momentum from the fluid side is used. Next we define the volume-weighted divergence operator by
multiplying the regular divergence operator through by the volume of the cell (see for example [31, 32]). For
example, in two spatial dimensions

−ĜT = ĜT (uL, uR, vB , vT ) = ARuR −ALuR +AT vT −ABvB ,

where u are the left- and right face velocities of the cell, v are the bottom- and top face velocities of the cell,
and A are the respective face areas. Then the negative transpose of this is the gradient operator Ĝ, which
can be used to write the momentum update for the dual cells as

~̂un+1 = ~̂u? − β−1Ĝp̂n+1. (19)

Taking its volume-weighted divergence with −ĜT gives

−ĜT ~̂un+1 = −ĜT ~̂u? + ĜTβ−1Ĝp̂n+1. (20)
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(a) Density using second order accurate ENO-GLF. (b) Density using ENO-GLFT.

(c) Momentum using second order accurate ENO-GLF. (d) Momentum using ENO-GLFT.

(e) Internal energy using second order accurate ENO-GLF. (f) Internal energy using ENO-GLFT.

Figure 9: A comparison of the impact on how the advection step is spatially discretized. In the left column a standard second
order accurate ENO-GLF is used to compute the advective fluxes, while in the right column the ENO-GLFT of Section 3.2
is used. There is no significant difference near the rarefaction region, x ≤ .5, and the difference near the shock (located near
x = .937) is minimal. At the contact discontinuity, however, a significantly faster convergence rate is seen – indeed these results
compare qualitatively well with those depicted in the right-hand column of Figure 7, where an unmodified version of the third
order accurate ENO-GLF scheme is used. The CFL number α is .5, and results are shown for t = .25s.
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And following the derivation of Equation (15) then leads to[
P̂−1 + ĜTβ−1Ĝ

]
p̂n+1 = P̂−1p̂a + ĜT ~̂u? (21)

where G and GT are replaced by Ĝ and ĜT , the density and velocity at cell faces are computed using the
volume-lumping explained in the beginning of this subsection, and the diagonal matrix P̂−1 = V/[∆t2ρn(c2)n]
is the volume-scaled version of P−1 above.

Once this implicit pressure p̂n+1 is computed, we apply it back to the conserved variables in a flux-based
manner in order to remain conservative. The updates for momentum and energy for a given cell i can be
written

(ρ~u)n+1
i = (ρ~u)?i −

p̂n+1
i+1/2 − p̂

n+1
i−1/2

∆
and En+1

i = E?i −
p̂n+1
i+1/2û

n+1
i+1/2 − p̂

n+1
i−1/2û

n+1
i−1/2

∆
(22)

where both p̂n+1 and ûn+1 are evaluated at face locations, and the discretization width, ∆, can be recovered
by dividing the volume associated with the cell Vi by the dual cell face area Ai−1/2 = Ai+1/2, i.e. ∆ =
Vi+1/2/Ai+1/2. Note our cross-sectional areas A do not change, and are always equal to either ∆x or ∆y

depending on the dimension. The pressure for a given cell face i + 1/2, p̂n+1
i+1/2, is computed as a density-

weighted average of the two cells adjacent to the face as in Equation (16), and the face velocity ûn+1 is
recovered from Equation (19) as

ûn+1
i+1/2 = û?i+1/2 − β

−1
i+1/2Ĝi+1/2p̂

n+1, (23)

similar to Equation (17) with G replaced by Ĝ, ρ̂ replaced by β, and the ~̂u? computed using the volume-
lumping explained in the beginning of this subsection.

If one knows the Neumann velocity ûn+1
i+1/2 for a constrained face, then the pressure gradient Ĝi+1/2p̂

n+1

at that face can be recovered from Equation (19) using βi+1/2 and û?i+1/2 from above. At a constrained
Neumann face we can compute

p̂n+1
i+1/2 = p̂n+1

i + dĜi+1/2p̂
n+1,

where d is the distance from the cell center i to the cell face i + 1/2 (see for example [32]). Note, however
that d is a O(∆x) term and that typically only a lower-dimensional manifold of cell faces are constrained as
Neumann faces, and thus one could also set p̂n+1

i+1/2 = p̂i.

3.4. Sod’s shock example
We consider Sod’s shock with initial conditions specified over a computational domain of [0, 1] as

(ρ(x, 0), u(x, 0), p(x, 0)) =

{
(1, 0, 1) if x ≤ .5,
(.125, 0, .1) if x > .5,

where the baseline solution, computed on a uniform grid using ENO-GLFT and the improved computation
for advected pressure, was shown in the right column of Figure 9. Here we consider Sod’s shock under non-
uniform grid refinement using the grid pattern shown in Figure 2, except that the domain is [0, 1] rather than
the depicted [0, 5]. Each of the refinement boundaries, now located at x ∈ {.2, .3, .4, .6, .7, .8}, are treated as
described in Figure 5—that is, ENO stencils in the vicinity of these refinement boundary faces are reduced
in width so as not to cross refinement faces, and the cells immediately to the left and right of the refinement
face represent the semi-Lagrangian region. The resulting flow field at t = .25s is shown in Figure 10. We
could also treat the region within x ∈ [.2, .8] as the semi-Lagrangian region and take 8 times larger time
steps, using only the coarsest grid cells to dictate the time step. The resulting flow field is shown in Figure 11
and demonstrates the unconditional stability of the hybrid semi-implicit solver on the non-uniform grid.

It is interesting to note the over-heating that appears in the internal energy shown in Figure 11(e), near
x = .875. This seems to be generated when a shock passes from the fully refined semi-Lagrangian region in
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x ∈ [.2, .8] into the flux-based region. After the shock passes through that hybrid interface, the overheating
peak passively advects with the flow. An isobaric fix such as the one discussed in [13] may alleviate these
peaks, but doing so would sacrifice conservation. Similar but less pronounced issues occur in Figure 10(e)
when the scheme used to capture the numerical shock changes.
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(a) Density (b) Pressure

(c) Momentum (d) Velocity

(e) Internal Energy (f) Total Energy

Figure 10: Results for a Sod shock at t = .25s, when computed via the semi-implicit formulation on a non-uniformly refined
grid, using the hybrid advection scheme and TVD-RK3 time integration. The twelve cells at the refinement boundary represent
the semi-Lagrangian region, and the remainder of computational domain are solved using ENO-GLFT (dropping the order of
accuracy locally as discussed in Figure 5).
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(a) Density (b) Pressure

(c) Momentum (d) Velocity

(e) Internal Energy (f) Total Energy

Figure 11: Results for a Sod shock at t = .25s, when computed via the semi-implicit formulation on a non-uniformly refined
grid, using the hybrid advection scheme and TVD-RK3 time integration. All cells between x = .2 and x = .8 are treated using
the conservative semi-Lagrangian advection scheme, and the time step is dictated only by the coarse grid cell sizes.
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Figure 12: When a grid cell is cut by a structure interface (shown as a red segmented curve), we first clip the segments of the
curve against cell boundaries as shown in the second figure. Then the clipped interface is stitched together with contiguous
components of the cell volume boundary, yielding the cut cells shown in as the red and blue polygons in the third figure. Finally,
the visibility sample points are computed as the significant features of the polygon that do not lie on the structure interface,
and lie inside the cut cell polygon Ω or on the cut cell’s boundary ∂Ω (see the yellow and green dots in the last figure).

4. Fluid-structure interactions

We modify the fluid-structure solver of [14] by incorporating cut cells and partial cell volumes into both
the explicit advection and the implicitly coupled stage of the solver. This is done without introducing any
new degrees of freedom; instead cut cells are populated on the fly, advected using the conservative semi-
Lagrangian scheme, and then their material is redistributed back to cell-centered degrees of freedom. Since
the semi-Lagrangian scheme is only used in a thin band of cells near the structure interface, standard high
resolution results are obtained in the bulk of the flow field.

4.1. Computing cut cells
Fluid grid cells that are cut by the structure interface are divided into a number of partial cell volumes,

and each of these polygonal regions are assigned some sample points to aide in the computation of visibility
(see Sections 4.2 and 4.3). While a number of techniques exist in the literature, we use a straightforward
approach where the simplices of the structure interface are first clipped to a cell volume and then stitched
together with the cell volume boundary to form the cut cell volumes. This is trivial in one spatial dimension,
and illustrated for two spatial dimensions in Figure 12. Visibility sample points are computed for these
polygonal regions in an ad hoc fashion by identifying the significant features such as the nodes and face
centers of the cut cell geometry, centroid, etc., that do not lie along the structure interface—see e.g. the
yellow and green dots shown in the fourth subfigure of Figure 12. For all non-cut cells in the semi-Lagrangian
region, we use the cell center for visibility as necessary. In general any approximate interface reconstruction
suffices so long as some estimate of cell volume can be given, and some ability to determine visibility is
provided. We never need to advect the cut cell geometry itself, avoiding the geometric challenges that
typically arise from resolving collisions. Note that we do not consider three spatial dimensions in this paper,
however there is no intrinsic three-dimensional limitation to the algorithm as described.

We do not consider three spatial dimensions in this paper, and instead refer the interested reader to [4]
or [45] where cut cell generation techniques are discussed.

4.2. Material lumping
The goal of material lumping is to make sure that all cut cells are associated with a cell-centered degree

of freedom. The left-hand polygonal region shown in Figure 12 contains its own cell center, and so is trivially
associated with it. The right-hand polygonal region shown in Figure 12 on the other hand does not contain
a cell center, and moreover cannot be lumped onto the cell center associated with its own grid cell as that
cell center lies on the wrong side of the structure interface. Instead this polygon is lumped onto visible
adjacent degrees of freedom. In order to determine which adjacent degrees of freedom are visible we look at
all orthogonally adjacent neighbors and cast rays from the sample points of the cut cell to the adjacent cell
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centers; if any of the rays do not intersect the solid interface, which is fixed in time, then that neighbor is
visible (note that adjacent cells may also be a cut cell that contains its own cell center degree of freedom,
and so the left-hand polygon from Figure 12 could also absorb material from neighboring cut cells). If none
of the orthogonally adjacent neighbors are visible we look to diagonally adjacent neighbors, and if none of
those are visible we discard the polygon and its volume. Note that this does not violate conservation except
at time t0 as we are careful not to assign any material to these cut cells during advection—see Section 4.4. If
this is a problem at time t0 one could still enforce conservation by manually moving this material to adjacent
degrees of freedom.

Once we have a list of all visible neighbors, whether it be a number of orthogonally adjacent neighbors
or alternatively a number of diagonally adjacent neighbors, we compute a conservative material distribution
operator. This is done by putting an axis-aligned bounding box around the polygon, and using the ratio
between the sides of the rectangle to determine how much volume is distributed to each of the visible adjacent
cells, setting length to zero if the corresponding orthogonal cell center is not visible. The remaining weights
are normalized so that they sum to one, and then used to conservatively distribute the cut cell’s volume to
surrounding cell-centered degrees of freedom. In the case where no orthogonally adjacent cells are visible
and instead only diagonally adjacent cells are visible, we set all weights equal, i.e. the volume is equally
distributed to all visible diagonal cells. After distribution the per-unit-volume quantities at the cell-centered
degrees of freedom are changed in order properly account for the lumped material. For example, the new
density ρ at the cell center can be computed as

ρnew =
M + M̄cut

V + V̄cut
(24)

where M and V is the cell mass and volume respectively before lumping, M̄cut is the mass lumped onto
the cell center from all neighboring cut cells and V̄cut is the total volume lumped onto the cell center from
neighboring cut cells. Equation (24) is also applied to the momentum and energy. At this point all material
and volume has been associated with a standard Cartesian degree of freedom.

4.3. Temporal visibility
Now that we have computed our cut cells and lumped orphaned volumes onto neighboring degrees of

freedom where possible, we next re-address visibility from the standpoint of what is required for advection.
Advection occurs between time tn and time tn+1 and thus we build a temporal visibility map using continuous
collision detection [7, 15] as opposed to the static solid positions used above in Section 4.2. Recall that all
cells near the structure interface will be treated with the semi-Lagrangian method; then we say that a time
tn full or cut cell i and a time tn+1 full or cut cell j can interact with each of other if there exists at least one
pair of sample points that one can travel between during the time step without colliding with the moving
structure—this is where continuous collision detection is used. Conceptually speaking we place a particle
at the time tn sample point and give it a constant velocity equal to the displacement vector to the time
tn+1 sample point divided by the size of the time step. Then if this particle collides with the moving solid
interface at some time τ , these sample points cannot reach each other. For our purposes we linearize the
motion of each segment of the solid structure and check the particle collision against all segments which are
near it (e.g. that are within one grid cell of the particle over the time step; this can be determined quickly via
acceleration structures). If a given time tn cut cell cannot see anything at time tn+1, then that cut cell and its
volume is discarded; this does not violate conservation as the conserved quantities can be left on cell-centered
degrees of freedom (i.e. that material is never “unlumped” from the cell-centered degree of freedom). Note
that a collision can only occur if the three involved points become colinear at some time τ ∈ [tn, tn + ∆t],
and a secondary check must be done to see if the colinear particle lies within the line segment. Very robust
algorithms exist for doing this, as can be seen by the collisions in the cloth simulations of [7] and the water
and cloth simulations in [15]. In three spatial dimensions one must determine τ as the times of coplanarity
for four particles, and this requires solving for the roots of a cubic polynomial. We caution the reader that
those authors discovered that double precision was required to solve the resulting cubic as opposed to single
precision, which was not accurate enough to capture all collisions. Moreover closed-form solutions for the
cubic are not accurate enough and one must instead use an iterative solver.
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4.4. Advection
As discussed in Section 4.2 volume from cut cells was lumped on to cell-centered degrees of freedom.

At the beginning of the advection stage these degrees of freedom return the same exact volume that they
received back to their cut cells, along with a proportional amount of their current material. That is, the mass
given to a cut cell is ρnVcut, where Vcut was the volume lumped onto the degree of freedom from that cut
cell and ρn is the current density at the cell center. Momentum and energy is handled in the same manner.
In particular, note that cut cells receive the same volume that they gave, but different amounts of material.

For any cut cell that has a computed geometry, we use its bounding box to transform the complicated
geometry into a Cartesian cell (i.e. a rectangle). Thus at time tn we have a collection of Cartesian cells, those
from the regular grid along with the cut cells bounding boxes, which we note may overlap each other. Then
for a given full or cut cell at time tn+1, the center of its rectangle is traced backwards along its characteristic
curve and is intersected against time tn full and cut cells bounding boxes (as described in Figure 1). Note that
overlapping cut cells do not change our algorithm, we simply calculate the overlap with every cell and apply
this scheme as if there were no overlap. The backward-cast ray may cross over the structure interface and
permit flow to leak across it, and one could improve the guess for the end-point of the backward-cast ray by
taking into account the moving structure interface via continuous collision detection, recording the collision
location on the structure interface, and then following that position on the structure back to time tn. In
fact, as we are tracing volumes back in time one might even consider using continuous collision detection on
the boundary of the volume to compute a squished backward-cast volume, similar in spirit to VOF and ALE
methods, but this quickly becomes quite complicated (especially in three spatial dimensions). A somewhat
simpler approach would be to only collide the cell center and then try to reconstruct a traced-back Cartesian
cell by sending out rays to each of its four corners, colliding these rays with the time tn structure interface
to create a quadrilateral—though even that quadrilateral’s overlap with other cells requires scrutiny as parts
of the quadrilateral volume may lie on the wrong side of the interface even if the four corners do not. We
instead propose a simple approach that uses the temporal visibility map from Section 4.3. After tracing back
the cell center, whether one wishes to collide it with the moving solid structure or not (for more accuracy),
we simply place the orthogonally aligned cell (or cut cell bounding box) at the foot of the characteristic as
in Figure 1. Then when calculating overlap, again as in Figure 1, we simply ignore cells that are not visible
to the original cell according to the visibility map. The clamping step of advection does not change, and all
of the statements made above for backward advection also hold for the forward advection step. That is, we
simply push our point forward along its characteristic curve, potentially colliding it with the time-evolved
structure for more accuracy, and compute the weights as the overlap of rectangles discarding any that are not
visible according to the temporal visibility map. Unlike backward-advection if weights are discarded in the
forward advection step then the remaining forward-advected weights fij are scaled up accordingly so that
no material is lost, providing for conservation. If all weights are discarded then we can distribute material
to any nearby cells which are allowed for by the temporal visibility map. One could consider not only those
near the destination, but also those along the characteristic curve and near the original cell itself. If this fails
one might need to go back and reconsider the temporal visibility map itself, possibly placing more sample
points in the cells or expanding how one searches. Generally speaking we are providing a strategy, and have
found that the simplest possible version of that strategy works for our examples, however for completeness
we are describing how one should proceed as examples become more complex.

Whereas advection proceeds with every full and cut cell treated as a normal cell, afterwards the material
and volume in cut cells are distributed back to cell-centered degrees of freedom as described above in
Section 4.2. If the visibility map at time tn+1 contains a cut cell that currently has material in it but cannot
be lumped onto any adjacent neighbors, then we alter the previously described advection scheme to not
advect material into this cell—otherwise that material would be lost, violating conservation. Note that our
treatment works by computing weights locally, and so does not work in the case of some structure-structure
collision where material is instantaneously forced to move rather large distances as it is squeezed out of a
region of the computational domain, or in areas of unresolved curvature where a structure folds in upon
itself. This represents an area of future work, however hypothetically speaking our strategy seems to extend
to these cases, although the required code might contain complexities we have not anticipated. It is worth
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noting that this problem does not seem to have been addressed in the literature.

4.5. High resolution time integration near the fluid-structure interface
As the volume associated with a given fluid degree of freedom changes or vanishes, the state averaging

that Runge-Kutta time integrators rely on to achieve high order accuracy breaks down, violating conservation
and—if the structure is thin—mixing flow variables from both sides of the structure interface. One might
consider a sophisticated solver that volume-weights the state variables, but unfortunately this still fails when
the volume associated with a particular degree of freedom vanishes entirely. This issue only arises near the
fluid-structure interface and so we still use Runge-Kutta in the flux-based region of the flow.

We couple the semi-Lagrangian solver for the region near the structure interface with the flux-based
Runge-Kutta solver in the bulk of the domain as follows. First consider second order Runge-Kutta (RK2),
which can be applied by taking two forward-Euler steps and then linearly interpolating between the solution
at time tn and time tn+2 to obtain the solution at time tn+1. To hybridize this with our semi-Lagrangian
scheme we take the first Euler substep for both the flux-based and semi-Lagrangian regions as usual. Then
the second Euler step can be taken for the flux-based scheme and the averaging can be performed to obtain
a final time tn+1 solution in that region. Note that the actual flux that takes one from time tn to the final
time tn+1 in RK2 is simply the average of the two computed fluxes, and thus we can use that averaged flux
as the effective flux to step forward the flux-based region, obtaining the same answer. Thus we can use that
averaged flux as the boundary condition for the semi-Lagrangian scheme, which can then take an Euler step
forward from time tn to time tn+1 in order to obtain the final solution in that region.

Third order TVD Runge-Kutta (TVD-RK3) proceeds similarly as follows. Similar to RK2 one takes
two Euler steps, and one semi-Lagrangian step would be needed to compute the second Euler step in the
flux-based region, and then time averaging is done in that region to obtain a solution at time tn+1/2. The
effective flux for this is the same as above, albeit for half a time step, and so exactly as in RK2 we use this
as a boundary condition to evolve the semi-Lagrangian region forward by ∆t/2 to time tn+1/2. Then we
have data everywhere in the domain in order to take another Euler step in the flux-based region to go from
time tn+1/2 to time tn+3/2, at which point one can take a linear average between that solution and the time
tn solution to compute the final solution in the flux-based region at time tn+1. Once again this can be seen
as a single time step with an averaged flux, which is 1/6 of the first and second fluxes and 2/3 of the third
flux, and use this averaged flux as a boundary condition on the semi-Lagrangian region to evolve that region
of the flow to time tn+1. Unlike RK2 where all the temporal visibility information from time tn to time
tn+1 is enough, as the semi-Lagrangian region only evolves between these two states, in this case one needs
to also compute all the temporal visibility information at the time tn+1/2, as the semi-Lagrangian region
must be evolved to this state in TVD-RK3. The solid evolution also needs to be done to time tn+1/2 and we
simply take the linearly averaged state (e.g. Xn+1/2

S = 1
2 [Xn

S + Xn+1
S ]) and use effective velocities. Finally,

note that our treatment of time integration near the flux boundary is not aimed particularly at addressing
accuracy, rather the goal of having a TVD-RK3 method is as much of the domain as possible is to provide
an enhanced stability region—one typically applies RK3 to other compressible flow problems for the same
reason, an enhanced stability region.

4.6. Solid evolution
The solid state is completely described by its velocity VS(t) and position XS(t), and we update the

position and velocities separately in a Newmark-style scheme. Note that throughout the paper when we
refer to an effective velocity, we do not mean VS but rather (Xn+1

S − Xn
S )/∆t, a velocity based entirely

on displacements. First the velocity is evolved for half a time step to V n+1/2
S , and then this intermediate

velocity is used to update the position via Xn+1
S = Xn

S + ∆tV
n+1/2
S . Finally, the velocity is reset to time

tn and evolved for a full time step ∆t to compute the time tn+1 state. For deforming bodies we update the
velocity via

MSV
n+1
S = MSV

n
S + ∆tF (Xn

S , V
n+1
S ).
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where MS is the mass matrix and F are the forces, which are treated explicitly in position via Xn
S and

implicitly in velocity via V n+1
S . Applying Taylor series on the velocity term of F (·, ·) gives

MSV
n+1
S = MSV

n
S + ∆t(F (Xn

S , V
n
S ) +D(Xn

S )[V n+1
S − V nS ])

where D = ∂F
∂VS

are the linear damping terms. We then explicitly compute

MSV
?
S = MSV

n
S + ∆t [F (Xn

S , V
n
S )−D(Xn

S )V nS ]

and implicitly solve
MSV

n+1
S = MSV

?
S + ∆tD(Xn

S )V n+1
S . (25)

Note that since Xn+1
S was already computed before solving for V n+1

S one could also use Xn+1
S rather than

Xn
S when computing F (·, ·) and D(·), for enhanced stability. Note also that V n+1/2

S is computed in the same
manner as V n+1

S including both linearization and the implicit solve, however for V n+1/2
S only Xn

S exists and
therefore one cannot use a future XS for enhanced stability. A rigid body has significantly fewer degrees
of freedom than a deforming body with its center-of-mass and orientation as positional degrees of freedom,
and center-of-mass velocity and angular velocity as velocity degrees of freedom. Using generalized mass
and velocity its equations can be treated in a manner similar to the deformable case, except that there is
no intrinsic damping and no need for the implicit solve. For more details on rigid and deformable body
simulation in regards to two-way solid-fluid coupling see [42].

4.7. Coupled time evolution
Our time integration scheme proceeds as follows. Using the time tn solid position, we first determine

all fluid faces which need to be constrained to the solid as discussed in Section 4.8. Note that a later step
will consist of determining those at the solid’s time tn+1 position, and therefore one can use the time tn+1

constraints from one time step as the time tn constraints at the next time step (i.e. this only needs to
be done once per time step). Next we explicitly compute the intermediate solid momentum MSV

?
S , after

which we formulate and solve the solid-fluid coupled system (see Section 4.8) to find the intermediate solid
momentum MSV

n+1/2
S , which is used to update the position from Xn

S to Xn+1
S before the velocity is reset

to its original time tn values. This gives our final time tn+1 position of the solid, which we then use to
once again determine which fluid cell faces need to be constrained. Next we need to update both the fluid
state and solid momentum to time tn+1. This is done by first advecting the fluid forward in time using
the fully conservative interpenetration-free advection algorithm of Section 4.4 in the Runge-Kutta style time
integration of Section 4.5. We also compute the intermediate momentum for the solid MSV

?
S . Finally we

once again solve the coupled system (of Section 4.8) to find the final time tn+1 momentum of the solid, as
well as the final time tn+1 fluid state.

The time step is computed as is done in [24], where in two spatial dimensions

∆t

2

 |u|max

∆x
+
|v|max

∆y
+

√(
|u|max

∆x
+
|v|max

∆y

)2

+ 4

(
|px|
ρ∆x

+
|py|
ρ∆y

) ≤ 1, (26)

noting that when the fluid is not at rest one can typically neglect the higher order terms. As cut cells and
partial volumes are advected using the unconditionally stable conservative semi-Lagrangian method, these
small volume terms do not appear in the time step restriction and the spatial terms in Equation (26) do not
vary as the structure interface sweeps across the grid.

4.8. Implicit monolithic system
Constraints are identified through a ray-casting approach, where for every fluid cell we cast a ray from

its cell center to the center of each of its orthogonal neighboring cells; if the ray intersects the structure
interface then a constraint is introduced. We use a restriction operator W that acts on fluid grid cell faces
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and returns a vector of constrained faces. That is, if there are m constrained fluid faces and n total fluid
faces, then W is an m× n matrix where

Wij =

{
1 fluid face j is the ith constraint along the structure interface
0 otherwise,

noting that there may be up to two constraints per cell face if there is fluid on both sides of the structure
interface. These constraints are treated independently, and do not interact except through the solid consti-
tutive model. The other matrix of interest is J, which is a conservative interpolation operator that maps
solid velocity degrees of freedom to constraint locations [43].

At each constrained face we enforce velocity continuity. Writing this as an equation for all constrained
faces results in

JV n+1
S −Wûn+1 = 0. (27)

This constraint is enforced using a set of impulses λ that are exchanged between the fluid and the structure.
Equation (25) for the structure becomes

MSV
n+1
S = MSV

?
S + ∆tDV n+1

S − JTλ. (28)

and the corresponding equations for the fluid become

~̂un+1 = ~̂u? − β−1Ĝp̂+ β−1WTλ, (29)

Since the row sums of both JT and WT are unitary, any momentum lost by the structure is recovered by
the fluid and vice versa, making the method fully conservative in momentum.

Then we assemble the following linear systemP̂−1 + ĜTβ−1Ĝ −ĜTβ−1WT 0

−Wβ−1Ĝ Wβ−1WT −J
0 −JT −MS + ∆tD

 p̂n+1

λ
V n+1
S

 =

P̂−1p̂a + ĜT ~̂u?

−W~̂u?

−MSV
?
S

 , (30)

where the equations for the fluid pressure come from the derivation of Equation (21) incorporating the
additional λ term from Equation (29), the equations for the solid velocity come from Equation (28), and
the middle row of equations come from substituting Equation (29) in to Equation (27). For newly swept or
uncovered pressure degrees of freedom, we replace the [ρn(c2)n] terms of P with [ρ?(c2)?]. This is the only
special treatment given to swept and uncovered cell-centered degrees of freedom.

Following [42] we also assume that −∆tD = ĈT Ĉ, i.e. that the structure damping matrix is symmetric
negative definite. We introduce new degrees of freedom f = ĈVS , and Equation (28) can be premultiplied
by M−1

S , giving
V n+1
S = V ?S −M−1

S ĈT fn+1 −M−1
S JTλ, (31)

Substituting Equation (31) into the middle set of rows in Equation (30) and multiplying the third row by
ĈM−1

S givesP̂−1 + ĜTβ−1Ĝ −ĜTβ−1WT 0

−Wβ−1Ĝ Wβ−1WT + JM−1
S JT JM−1

S ĈT

0 ĈM−1
S JT I + ĈM−1

S ĈT

p̂n+1

λ
fn+1

 =

P̂−1p̂a + ĜT ~̂u?

JV ?S −W~̂u?

f?

 . (32)

After solving this symmetric positive-definite system we recover the solid velocities via Equation (31), and
are careful to keep the momentum and kinetic energy exchange conservative as explained in detail in [14].
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5. Examples

We consider a number of one-dimensional and two-dimensional fluid-structure examples. In the discussion
below all units are presented in SI (that is, mass in kg, velocity in m/s etc.). In all of the examples discussed,
we found the implicit system to be well-behaved as a result of the large diagonal terms, and so we use a
simple diagonal preconditioner when solving Equation (32), i.e. we row-scale and column-scale the matrix.
The matrix form of our preconditioner isP̂ 0 0

0
(
Wβ−1 + JM−1

S

)−1
0

0 0 I

 ,

and the resulting system requires only between 11 and 36 iterations of Conjugate Gradients to converge
to numerical round-off, depending on the structural model. The P̂ term alone brought down the number
of iterations from on the order of 150 to around 13, and adding the

(
Wβ−1 + JM−1

S

)−1
only reduced the

average by about 2 iterations. We did not further experiment with preconditioning, as the P̂ alone seems
good enough, however we did use the matrix given above in our simulations, even though the middle term
provided only marginal improvement.

5.1. One-dimensional Sod shock coupled with a thin rigid body of varying mass
A one-dimensional rigid point-mass is inserted into a Sod shock tube simulation, where the flow is initially

prescribed over x ∈ [−1, 3] as

(ρ, u, p) =

{
(1, 0, 1) if x ≤ .5,
(.125, 0, .1) if x > .5

.

The solid is initially positioned at XS = 1.3001, and is hit by the shock at approximately t = .57s. We
consider a broad range of mass choices for the point mass, from infinitesimally light (MS = 10−6) to
extremely heavy (MS = 106), and a selection in-between (MS ∈ {10−2, 10−1, .25, .5, .75, 1, 2.5, 7.5, 10, 102}).
In the dynamic examples, where the solid is light enough (MS < 10), we check the convergence of the
position of the solid body and verify that in each case convergence is linear (see e.g. Figure 14). We show
some results in Figures 15, 16, 17 and 18.

For each choice in solid mass, we verify that no fluid mass moves across the structure interface, and we
also verify that within the computational domain no momentum or energy is created or destroyed. In order
to verify conservation of mass, we compute

ML =
∑

xi<XS

ρiVi MR =
∑

xi>XS

ρiVi,

the total fluid masses to the left and right of the solid, respectively, and plot a time history of the variation
from initial value in Figure 13(c). The figure shows the time history for MS = 1 which is representative of
other mass choices, with the total left fluid mass never varying more than 2 × 10−13 and right fluid mass
never varying more than 4× 10−14 for any selection of solid mass, within numerical round-off.

In order to compute the total error in momentum of the system, we note that until the rarefaction and
shock reach the domain boundaries the expected total momentum introduced into the system by time tN
is exactly .9 · tN , where .9 is the difference in pressure values from the left and right boundary conditions.
Then the total error in conservation of momentum at time tN can be written as∑

i

(ρu)Ni V
N
i +MSV

N
S − .9 · tN ,

and we show a time history of this error (for MS = 1) in Figure 13(a). This is representative of other mass
choices, with the total momentum of the system for any mass choice never varying more than 1.2× 10−13.
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As the velocity remains zero at the left and right boundaries of the domain, no work is done and the
total energy of the system should not vary from its initial value. We compute the total energy of the system
as ∑

i

EiVi +
1

2
MSV

2
S

and show a time history of the difference of this value from its original value (for MS = 1) in Figure 13(b).
This is representative of other mass choices, with the total energy of the system never varying more than
2.5× 10−13 from its initial value.

5.2. Stationary fluid damping a mass-spring system
In order to validate our results, we also consider the fluid-damped mass-spring system introduced in [1],

where a high pressure fluid acts as a damping force on a spring fixed to the right side of the domain. The
spring is of length 1 with spring coefficient k = 107. The fluid state is initialized over x ∈ [0, 20] as

(ρ, u, p) =
(
4, 0, 106

)
,

and at t = 0 the spring is released from rest, resulting in over-damped behavior. We show the position of
the free end of the spring in Figure 20, and plot the fluid pressure for a selection of times in Figure 19.

The convergence of the free end of the spring to the analytic solution at times t = .0075s and t = .008 are
shown in Figure 21, suggesting quadratic convergence to the analytic solution. This represents a significant
improvement over [14], which only achieves convergence at a rate of 1.16 for this example, and is likely
a result of the pressure gradient and divergence operators being discretized to high order accuracy as the
result of carefully considering cut cells. Interestingly, unlike [14] no oscillations are seen in the left-moving
shock front that spontaneously forms at t = .0045s; this is likely due to the improvements in the flow solver
discussed in Sections 3.1 and 3.2.
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(a) Error in conservation of momentum of the system, com-
puted as

∑
i(ρu)Ni V

N
i + MSV

N
S − (.9 · tN ), where (.9 · tN )

is the increase in total momentum of the system at time tN
due to pressure differences at the boundary.

(b) Error in conservation of energy of the system, computed
as
∑
i EiVi + 1

2
MSV

2
S . As the velocity of the fluid at the

boundary remains zero, no work is done and the total energy
of the system is constant.

(c) Error in conservation of mass for the left (green) and right (red) sides of the domain.

Figure 13: Conservation error of a Sod shock tube interacting with a rigid point-mass, with MS = 1. Note that the scale in the
dependent axis is 10−14, showing that all of the errors in conservation lie in the round-off error.
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(a) MS = .01 converges at 1.02. (b) MS = 1 converges at 1.01.

(c) MS = 5 converges at 1.07. (d) MS = 10 converges at 1.08.

Figure 14: Convergence rate for the position of a rigid point-mass, where error is computed as the L2 error in position against
the position from a highly refined solution. The rate of convergence is computed as the slope of the best-fit line on the log-log
scale of error as a function of grid refinement, and this best-fit line is shown in blue. This can be compared with a reference
line of slope 1, shown as the purple line.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 15: A Sod shock interacts with a rigid point-mass of mass 10−6, where the blue vertical line represents the position
of the solid; we show a snapshot of density (a), pressure (b) and momentum at t = 1s. The time history of momentum is
depicted in (d), where the fluid momentum to the left of the solid is shown in red, the fluid momentum to the right of the solid
is shown in green, and the momentum of the rigid point-mass is the dark blue line. The sum of these quantities are shown in
the purple line, and the light blue line represents the expected momentum of the system based on the pressure difference at the
boundary—note that these lines coincide exactly.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 16: A Sod shock interacts with a rigid point-mass of mass 10−1, where the blue vertical line represents the position
of the solid; we show a snapshot of density (a), pressure (b) and momentum at t = 1s. The time history of momentum is
depicted in (d), where the fluid momentum to the left of the solid is shown in red, the fluid momentum to the right of the solid
is shown in green, and the momentum of the rigid point-mass is the dark blue line. The sum of these quantities are shown in
the purple line, and the light blue line represents the expected momentum of the system based on the pressure difference at the
boundary—note that these lines coincide exactly.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 17: A Sod shock interacts with a rigid point-mass of mass 1, where the blue vertical line represents the position of the
solid; we show a snapshot of density (a), pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid momentum to the right of the solid is
shown in green, and the momentum of the rigid point-mass is the dark blue line. The sum of these quantities are shown in the
purple line, and the light blue line represents the expected momentum of the system based on the pressure difference at the
boundary—note that these lines coincide exactly.
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(a) Density. (b) Pressure.

(c) Momentum. (d) Time history of momentum in the system.

Figure 18: A Sod shock interacts with a rigid point-mass of mass 106, where the blue vertical line represents the position of
the solid; we show a snapshot of density (a), pressure (b) and momentum at t = 1s. The time history of momentum is depicted
in (d), where the fluid momentum to the left of the solid is shown in red, the fluid momentum to the right of the solid is
shown in green, and the momentum of the rigid point-mass is the dark blue line. The sum of these quantities are shown in the
purple line, and the light blue line represents the expected momentum of the system based on the pressure difference at the
boundary—note that these lines coincide exactly.
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(a) t = 0s (b) t = .0015s

(c) t = .003s (d) t = .0045s

(e) t = .0075s (f) t = .01s

Figure 19: Pressure of the flow field for Section 5.2, for a selection of times.
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Figure 20: Position of the free end of the spring for Section 5.2, as a function of time.

(a) t = .0075s with a best-fit convergence of 2.12. (b) t = .008s with a best-fit convergence of 2.29.

Figure 21: Convergence of the free end of the spring to the analytic solution, for Section 5.2. The rate of convergence is
computed as the slope of the best-fit line on the log-log scale, and this best-fit is shown above in blue. This can be compared
with a reference line of slope 1 (representing linear convergence), shown as the purple line, and a reference line of slope 2
(representing quadratic convergence), shown as the brown line.
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5.3. Two-dimensional examples
We consider a variety of solid bodies submerged in an ideal gas, with initial conditions specified by

(ρ, u, v, p) =

{(
5.4, 20

9 , 0,
31
3

)
x ≤ xs

(1.4, 0, 0, 1) x > xs

where the initial location xs of a Mach 3 rightward-moving shock varies per example. For each example
involving a dynamic moving structure we compute the convergence of the center of that structure with
respect to a high-resolution simulation via its L2 error. The resulting errors are plotted as a function of grid
refinement on a log-log scale in Figure 22 and the line of best fit is computed and shown as a blue line. The
slope of this line gives the convergence rate and can be compared against a line of slope 1 (shown in purple),
which is representative of the behavior of a linearly converging solution.

5.3.1. Leakproof validation with an infinite-mass rigid thin shell
The discontinuity is initialized at xs = .475, and reflects off of an infinitesimally thin, slanted rigid body

that separates two regions of the flow. The body is assigned an infinite mass (by setting M−1
S = 0), and so

the fluid to the right of the body (in ΩR) remains quiescent. We examine the total material to the right of
the body, calculating ∑

i∈ΩR

φ̂iVi.

At t = 0, the mass in ΩR is .112, with .2 total energy and no momentum, and over the course of the
simulation these terms vary by less than 10−18.

Figures 23 and 24 show the time evolution of the flow field for pressure and density, respectively. When
the shock initially makes contact with the rigid body the shock reflects, and as it nears the funnel point of
the channel it forms a Mach stem along the top edge of the channel that travels to the left. A similar feature
begins to form along the rigid body, but is quickly overtaken by the reflected shock front.

5.3.2. Leakproof validation with a constrained deforming thin shell
A thin deforming shell separates the channel into two regions, and the planar shock is initially at xs = .475.

The thin deforming shell is comprised of 21 line segments, 2 constrained nodes and 20 unconstrained point
masses. Each dynamic node is assigned a mass of .0476, and the top and bottom nodes are fixed to the walls
by assigning them an infinite mass (by setting M−1

S = 0), ensuring that they do not move. The nodes are
connected together by springs with a stiffness of k = 15 whose initial configuration dictates their rest length.

Figures 25 and 26 show the time evolution of pressure and density. The shock reflects off of the structure
and causes it to buckle to the right. As the shell moves to the right a region of low mass and pressure
gradually forms to its left as seen at t = .16s. The constraints fix the two ends to the walls of the channel,
and at t = .2s these constraints cease the rightward-motion of the shell. As the solid structure slows, a
strong pressure and mass spike forms to its left, while a corresponding mass and pressure vacuum begin to
form to its right.

The position of the center-of-mass of the deforming body converges at a rate of 1.471, shown in Fig-
ure 22(a). The super-linear convergence is likely aided by the constrained nodes, whose influence does not
change under grid refinement. We verify that the mass to the right of the deforming plate is non-changing,
and the mass does not change (up to numerical round-off) from 0.13972. Unlike the previous example,
however, the momentum and energy of ΩR do change (as these quantities appropriately transfer across the
solid structure).

5.3.3. Asymmetric shock reflection off a rigid cylinder
Similar to [14], we consider a rigid cylinder of radius .05, initially positioned at (.15, .06) with density

10.77. The shock is initially positioned at xs = .08 and asymmetrically reflects off of the cylinder and walls.
This asymmetry imparts lift on the cylinder, driving it up as it travels to the right. Under grid refinement
the L2 error of the position of its center converges at a rate of .962, shown in Figure 22(b), and the flow
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(a) Example from Section 5.3.2 converges at a rate of 1.471. (b) Example from Section 5.3.3 converges at a rate of 0.962.

(c) Example from Section 5.3.4 converges at a rate of 1.204. (d) Example from Section 5.3.5 converges at a rate of 1.342.

Figure 22: Convergence rate for the center of the dynamic structure is computed using the L2 error in position against the
position from a highly refined solution. The rate of convergence is computed as the slope of the best-fit line on the log-log scale
of the L2 error as a function of grid refinement, and this best-fit line is shown in blue. This can be compared with a reference
line of slope 1, shown in purple.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 23: Time evolution of density in the example described in Section 5.3.1, on a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 24: Time evolution of pressure in the example described in Section 5.3.1, on a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 25: Time evolution of density in the example described in Section 5.3.2, on a 2560× 512 grid.
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(a) t = .04s

(b) t = .08s

(c) t = .12s

(d) t = .16s

(e) t = .2s

Figure 26: Time evolution of pressure in the example described in Section 5.3.2, on a 2560× 512 grid.
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field converges as shown in Figure 27. The time evolution is shown in Figures 28 and 29, for pressure and
density respectively.

5.3.4. Asymmetric shock reflection off a thin rigid shell
The cylinder from Section 5.3.3 is hollowed out and filled with a dense fluid specified by

(ρ, u, v, p) =

(
31

3
, 0, 0,

31

3

)
whose density and pressure are significantly higher than that of the pre-shock state. The asymmetric reflec-
tion still imparts lift on the cylinder, but the motion is delayed until the shock inside the solid hits the far
wall of the cylinder. The internal fluid motion causes the cylinder first to delay any rightward motion, then
(when the internal shock hits the right boundary at t = 1s) jump to the right and up. The time evolution
of pressure and density are shown in Figures 30 and 31, respectively. Under grid resolution, the position of
the center of the cylinder converges at a rate of 1.204, shown in Figure 22(c), and the flow field converges
as shown in Figure 32. The total fluid state inside the hollow cylinder is shown in Figure 33; note that the
total mass of fluid inside the cylinder does not change. The momentum and energy are more interesting,
exchanging information with the structure.

5.3.5. Planar shock interacting with a constrained, immersed deforming thin shell
In this example, a thin deforming shell is placed at x = .5 of length .5, and the planar shock is initially

located at xs = .475. The thin deforming shell is comprised of 21 line segments, 2 constrained nodes and
20 unconstrained point masses. Each dynamic node is assigned a mass of .0952, and the top and bottom
nodes are assigned an infinite mass (by setting M−1

S = 0), ensuring that they do not move. The nodes are
connected together by springs with a stiffness of k = 10 and whose initial configuration dictates their rest
length.

The shock reflects off of the deforming body and causes the deforming shell to buckle to the right, while
rarefaction fans form around the constrained nodes as flow passes by. As the deforming body reaches its
right-most location and bends back a second, weaker shock pushes out and to the left and forming a vacuum
behind the thin shell. Interesting vorticial structures start to form behind the thin shell, most easily seen
near x = .75 at t = .35s in Figure 34 and Figure 35. Under grid refinement (shown in Figure 36), note the
regime change from laminar flow to separating flow. This is a result of artificial viscosity vanishing under
grid refinement and the lack of any real viscosity by virtue of our simulating an inviscid flow. As the grid
becomes more refined we can expect the observed Reynolds number to go even further up, and more refined
detail should appear.

The position of the center-of-mass of the deforming body converges at a rate of 1.342, shown in Fig-
ure 22(d), and the flow field converges as shown in Figure 36. This is likely aided by the constrained nodes,
whose influence does not change under refinement. No material flows through the thin solid structure.
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(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 27: Grid convergence of the example described in Section 5.3.3, at time t = .21s.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 28: Time evolution of density in the example described in Section 5.3.3, on a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 29: Time evolution of pressure in the example described in Section 5.3.3, on a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 30: Time evolution of density in the example described in Section 5.3.4, on a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 31: Time evolution of pressure in the example described in Section 5.3.4, on a 2560× 512 grid.

48



(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 32: Grid convergence of the example described in Section 5.3.4, at time t = .21s.
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(a) Time evolution of mass error from the initial configuration. (b) Time evolution of x-axis fluid momentum.

(c) Time evolution of y-axis fluid momentum. (d) Time evolution of total fluid energy.

Figure 33: Time evolution of conserved material inside the hollow rigid cylinder from Section 5.3.4. In (a), we show the time
history of the error in total mass inside the cylinder, while (b), (c) and (d) show time history of fluid momentum and energy
inside the cylinder. Note that the scale in the dependent axis of (a) is 10−16, showing that the errors in conservation lie well
within round-off error.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 34: Time evolution of density in the example described in Section 5.3.5, on a 2560× 512 grid.
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(a) t = .07s

(b) t = .14s

(c) t = .21s

(d) t = .28s

(e) t = 35s

Figure 35: Time evolution of pressure in the example described in Section 5.3.5, on a 2560× 512 grid.
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(a) Resolution 160× 32

(b) Resolution 320× 64

(c) Resolution 640× 128

(d) Resolution 1280× 256

(e) Resolution 2560× 512

Figure 36: Grid convergence of the example described in Section 5.3.5, at time t = .21s.
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6. Conclusions and future work

We have presented a fully conservative high resolution method for the simulation of two-way coupled
fluid-structure phenomena. The method uses cut cells to track partial cell volumes, but requires no new time
step restrictions to remain stable. Furthermore, it is robust to high fluid density to solid mass ratios and
requires no special treatment for swept or uncovered cells. It is also collision-aware and therefore suitable
for thin, impermeable solid structures separating disparate fluids. The resulting monolithic implicit system
is symmetric positive-definite, and well-conditioned.

There are several interesting avenues of future work that we believe are worth exploring. The advection
scheme drops to first order accuracy near the fluid-structure interface, introducing numerical error into the
flow field, which may be mitigated by higher order accurate conservative semi-Lagrangian methods. One
potential candidate would be the MacCormack method of [44]. The hybrid flux formulation also opens up
some interesting possibilities, such as treating the flux region of the flow with a fully explicit method (i.e. fully
explicit in the pressure as well) and enforcing pressure boundary conditions at the boundary, significantly
reducing the fluid degrees of freedom of the coupled implicit solver. Moreover this would increase the accuracy
in the flux-based region.

The implicit system also has some directions worth pursuing, such as the better treatment of slip boundary
conditions within the solve by enforcing velocity compatibility at the structure interface, rather than at cell
faces. For example in the implicit update, rather than lumping cut cell volumes into neighboring cells and
enforcing compatibility through fluid grid cell faces (which causes geometric errors to appear in the flow
due to the “stair-stepping” of the interface), one might consider enforcing compatibility on the structural
interface directly, treating cut cells and partial volumes as additional degrees of freedom.
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