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Abstract

Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have
worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread
use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming.
Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves
to a fully conservative implementation. However, we propose a novel technique that applies a conservative
limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the con-
servative quantity does not increase during this advection. In addition, we propose a new second step that
forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian ad-
vection. We show that this new scheme can be used to conserve both mass and momentum for incompressible
flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection
step, but note that the divergence free projection results in a velocity field which is inconsistent with con-
servation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows,
we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via
an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass,
momentum and total energy in order to exactly conserve these quantities, and remove the remaining time
step restriction based on fluid velocity that the original scheme still had.

1. Introduction

The idea of applying the method of characteristics to advect quantities forward in time dates back at
least as far as [3] and has gained popularity in many areas, such as atmospheric sciences [46]. Although the
simplest schemes trace back along straight line characteristics and use low order interpolation to estimate
the data, one can trace back arbitrarily high order curved characteristics and use arbitrarily high order
interpolation, see for example [38]. The simplicity of these schemes makes them quite useful for adaptive
grids and other data structures, see for example [7, 31, 30, 47, 16]. Recently, authors have considered using
semi-Lagrangian methods as building blocks in other schemes, for example [17, 18, 6] showed that the second
order accurate BFECC method of [5] can be made unconditionally stable using the first order accurate semi-
Lagrangian method as a building block. In addition, [44] showed that the original scheme of MacCormack
[36] can be made unconditionally stable in a similar way. A notable feature of the semi-Lagrangian method is
that it relieves the time step restriction. This is part of the reason why it has received such interest from the
atmospheric sciences community [23, 26, 24, 55], as well as the compressible flow community [25, 43] where
the acoustic time step restrictions can be severe. We refer the reader to a particularly interesting body of
work that considers a number of methods for making semi-Lagrangian schemes conservative, considering one
spatial dimension, multiple spatial dimensions with splitting, multiple spatial dimensions without splitting,
and even obtaining conservation from a non-conservative form [49, 52, 39, 51, 48].

Intuitively, the idea behind a fully conservative semi-Lagrangian scheme is simply to advect the conserved
quantities along characteristic paths in a way that is careful to respect conservation. Many numerical methods
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are based on this principle, for example SPH methods push around chunks of mass, momentum and energy
assigned to particles, and have been used to solve both compressible and incompressible flows, including
flows with shock waves, see for example [9, 35, 20, 19, 53, 4, 2, 28, 32, 41, 10]. In fact, the idea of pushing
around conserved quantities is the basis for volume of fluid methods, which attempt to conserve volume (see
for example [40, 42, 27, 14, 29, 56]). In addition, ALE methods also push material around using a moving
grid, and some of those methods use a background grid along with a two-step procedure where the material
is first advected forward on a moving grid, and then remapped or redistributed to the background mesh in
a conservative fashion, see for example [15, 37, 33, 34, 1]. Obviously this idea of pushing around mass in a
conservative way respecting propagational characteristics for the sake of consistency has received quite a bit
of attention.

Notably, our method is quite simple, both conceptually and as far as implementation is concerned—it
requires only a small modification to a standard semi-Lagrangian scheme and utilizes most of the functionality
already present. The standard semi-Lagrangian method updates the value at a grid point by tracing a
possibly curved characteristic backwards in time to find its point of origin, interpolating the surrounding
data to that point, and placing the result of the interpolation at the original grid point. In this manner,
a grid point is updated with a linear combination of data from other points. One can view this as placing
some fraction of the data from other grid points at this point, and then consider what this means from
the point of conservation of this data. Considering the grid as a whole, each grid point traces back some
characteristic and obtains some fraction of data stored at other grid points. One can see that the scheme
is not conservative, since certain grid points contribute to multiple interpolations and the sum of all the
weights from that grid point to all the points where the interpolations were performed can be larger than
one. This means that the data contained at the grid point has been over-depleted, violating conservation.
Similarly, some grid points may not be asked for any of their data at all, or the sum of the inquisitive weights
may be less than one. This also violates conservation, in the sense that data has been left at that grid point
and not advected forward. Of course, we could simply account for this data by leaving it at that grid point,
but then the scheme would be inconsistent as this data needs to be advected forward. We note that it is
trivial to cure both of these pathologies in the semi-Lagrangian scheme by simply ensuring that the sum of
the interpolation weights from every point adds to one, and that any data that wasn’t advected forward is
pushed forward in our second semi-Lagrangian step.

To summarize, we make the following modifications to a standard semi-Lagrangian method. Each grid
point is thought of as a control volume, containing a certain amount of conserved quantity similar to any other
conservation law solver. We trace back the potentially curved semi-Lagrangian rays in the usual manner,
perform the interpolation in the usual manner, but add the additional step of recording all the interpolation
weights for every grid point so that we may check whether or not they are equal to one. Our first correction
requires sweeping through the grid, identifying any grid node which has been asked for more information than
it contains (i.e. sum of the weights is greater than one), and subsequently scaling down these weights such
that their sum is exactly equal to one. Then these corrected weights are used in place of the standard weights
in the semi-Lagrangian advection scheme. At this point, the standard semi-Lagrangian scheme is completed,
however as mentioned above, we have not advected all of the conserved quantity forward in time. Thus, for
each grid point whose weights sum to less than one, we need to advect the remaining conserved data forward
in time for consistency. This is done via a second application of the semi-Lagrangian method starting at
that grid point and tracing a potentially curved characteristic forward in time, to see where it lands (exactly
opposite of the standard semi-Lagrangian method). The remaining data at that point is placed at its new
location, however this new location will not lie at a grid point but will instead lie inside some grid cell. We
distribute the remaining data to the surrounding grid points by noting that the transpose of an interpolation
operator is a conservative distribution operator. That is, we simply calculate the interpolation weights at
the new point, just as one would in a standard semi-Lagrangian interpolation, and use those weights to
determine how much of the quantity is distributed to each of the surrounding points. Notably, the building
blocks for the second step already exist in most implementations, only the tracing of a characteristic and
the computation of interpolation weights are needed in the algorithm.

In this paper, we consider the application of our method to both incompressible and compressible flow.
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(a) Cell 5 casts a ray backward, −∆t~u, which lands be-
tween cells 1, 2, 3 and 4. Using a standard bilinear
interpolation scheme, the weights are calculated to be
w15 = .125, w25 = .375, w35 = .125, w45 = .375.

(b) Cell 5 casts a ray forward, ∆t~u, which lands between
cells 1, 2, 3 and 4. We again use standard bilinear interpo-
lation, giving forward-cast weights f51 = .06, f52 = .24,
f53 = .14, f54 = .56.

Figure 1: Standard semi-Lagrangian advection schemes cast rays either forward or backward along characteristic lines in order
to determine time tn+1 values at cell centers. We take advantage of this in our scheme, making use of the computed weights
wij and fij as appropriate. The notation wij and fij denote the contribution that cell i gives to cell j over a time step.

As far as mass is concerned, treating a variable-density incompressible flow and the density equation in
compressible flow requires only straightforward application of the method. As far as momentum and energy
are concerned, we take an approach which is similar for both incompressible and compressible flows. In
particular we use the method of [21] in order to solve the compressible flow equations in a way that requires
an advection step followed by a pressure solve similar to incompressible flow, but which contains an identity
term since pressure is based on the time dependent pressure evolution equation. Thus, both methods consist
of a conservative advection step, followed by an implicit solve for the pressure, and a final pressure correction
step. In the case of incompressible flow, our new semi-Lagrangian method can be used to exactly conserve the
momentum of the fluid, and if the pressure correction is viewed as a flux, then one can conserve momentum
in that step as well. In addition, we show how to account for stationary walls and potentially moving solid
object boundaries. The treatment for compressible flow is similar, except mass, momentum and energy are
conservatively advected with our semi-Lagrangian scheme before the pressure is solved for and the correction
is applied. We show how to apply the pressure correction in such a way so that both the momentum and total
energy are conserved, especially near solid walls and object boundaries. Finally, we note that a conservation
style equation can be formulated for the kinetic energy of an incompressible flow. This equation is similar to
that for compressible flow, with total energy replaced by kinetic energy along with the appearance of a source
term for losses due to viscosity. Although our scheme can be used to conservatively advect kinetic energy,
and accounting for the viscous source term is straight-forward, the pressure projection step is inconsistent
with the conservation of kinetic energy and therefore the resulting divergence-free velocity field disagrees
with that predicted by kinetic energy conservation. We provide some analysis of this along with quantitative
results.

2. Conservative semi-Lagrangian method

We begin by discussing the standard semi-Lagrangian method as applied in the simplest case of a passively
advected scalar φ, in a velocity field ~u,

φt + ~u · ∇φ = 0. (1)

Combining this equation with conservation of mass, ρt + ∇ · (ρ~u) = 0, leads to the conservative form of the
same equation:

(ρφ)t + ∇ · (φρ~u) = 0. (2)

For the sake of exposition, we define φ̂ = ρφ as the conserved quantity; this allows us to interchangeably
talk about φ, the passively advected scalar, and φ̂, the conserved quantity. For each grid point ~xj , the semi-
Lagrangian method would trace a potentially curved characteristic ray backward in time to some position
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~x, and use an interpolation kernel to obtain a value of φ̂ at ~x. This value is then used as φ̂(~xj , t
n+1). The

first order accurate case is illustrated by Figure 1(a), where a straight line characteristic is traced backward
in time from cell 5 to find ~x in-between cells 1, 2, 3 and 4. In equation form, this is given by

φ̂(~xj , t
n+1) = φ̂(~x, tn) =

∑
i

wij φ̂(~xi, t
n), (3)

where wij are interpolation weights such that ~x =
∑

i wij~xi. Dimension-by-dimension linear interpolation
yields a first order method. Notably,

∑
j wij = 1 for any consistent interpolation operator, regardless of the

size of the stencil or order of accuracy.
After updating φ̂ at every grid point, we can then define the total contribution from cell i to the time tn+1

data as σi =
∑

i wij , noting that this is not expected to sum to 1 due to numerical truncation errors. In fact,
since φ̂ is conserved as shown in Equation (2), in order to exactly conserve data during the semi-Lagrangian
update, σi should be exactly 1. Fixing this is the key idea of our numerical method. This is accomplished by
visiting each donor grid cell i, examining σi, and scaling down the weights wij to ŵij = wij/σi when σi ≥ 1,
which guarantees explicitly that we do not artificially create φ̂.

Next we treat the cells for which σi < 1. At these cells we apply a second pass of the standard semi-
Lagrangian scheme, casting rays forward, as illustrated for a first order accurate method in Figure 1(b),
yielding forward-cast weights fij . Noting that the transpose of an interpolation operator is a conservative
distribution operator, we use these weights fij to distribute the remaining φ̂, i.e. (1 − σi)φ̂i, to the cells j
used to perform the interpolation. This can be seen as incrementing the unclamped wij weights from the
first step by an amount equal to (1−σi)fij , so that the final weights are ŵij = wij +(1−σi)fij . Our update
is then given as

φ̂n+1
j =

∑
i

ŵij φ̂(xi, t
n). (4)

At the end of our two applications of the standard semi-Lagrangian steps, we now have modified weights ŵij

to satisfy
∑

i ŵij = 1. That is, every cell on the grid contributes exactly everything it has at time tn to the
time tn+1 solution along the characteristic lines which pass through the cell.

To summarize, when σi ≥ 1, we clamp the wij to obtain ŵij = wij/σi; using these new ŵij weights leads
to σi = 1. Otherwise if σi < 1, we forward advect the non-advected data at each grid point and use it’s
placement to calculate the new weights ŵij which also lead to σi = 1. We note that in the σi ≥ 1 case,
one could also forward advect and interpolate. In this fashion, one would be advecting negative material
to cancel out the excess of positive material that was advected by the first semi-Lagrangian step. However,
when this negative material is place at surrounding grid nodes using the fij weights, it is possible for the
target grid node xj to lose more of the conserved quantity than it originally had. Thus, for now, we only
consider the method of clamping even though it seems to limit the method to first order accuracy.

2.1. Boundary conditions
In the application of our method, we consider a number of different boundary conditions. For open

boundaries, inflow and outflow are treated by adding and filling the appropriate number of ghost cells. For
inflow boundary conditions, rays which extend out of the domain are treated in the standard semi-Lagrangian
fashion, and the amount of material donated from ghost cells to points interior to the domain is considered
to be our inflow. One could modify the inflow scheme to not simply perform semi-Lagrangian interpolation
but instead conservatively advect the sum of the ghost cell data, however this requires careful accounting
since, as ghost cells, some of these are not solved for.

Unlike the standard scheme where only interior points need to be updated, our outflow boundaries require
evaluation of ghost nodes in the numerical scheme to ensure that they withdraw the correct amount of φ̂
from the interior of the grid. Moreover one needs to ensure that enough ghost cells are updated, such that
the information is correctly withdrawn from the interior of the domain. After clamping, one also needs to
consistently advect data from interior nodes to ghost cells when σi < 1.

4



Throughout the paper, we measure our conservation error at time tn using the following equation:

Error(tn) = Σφ̂(tn) −
[
Σφ̂(t0) + Σin − Σout

]
, (5)

where the first term on the right-hand side represents the current amount of φ̂ on the grid and the second
term represents the initial amount. These should only vary through inflow and outflow which are represented
by the third and fourth terms. When updating φ̂n+1

i from φ̂n, if a semi-Lagrangian ray reaches back to ghost
cells and pulls information into the domain, then we track that for the Σin term. If information is transported
from the interior of our grid to the ghost cells, we track that for the Σout term. That is, ŵij ’s which contribute
to a ghost cell j are accounted for in Σout. There is rich literature on treating inflow and outflow boundary
conditions for fluid flows, and we imagine that many variations of our method could be designed in such a
way that is consistent with our treatment of the interior of the domain. However, we found this sufficient
for our examples.

Near solid walls and moving object boundaries, one must be careful not to interpolate across or into the
wall or object. All rays that are cast are done in a collision-aware manner, stopping any rays early if they
would pass through the interface, similar to the computational geometry approach detailed in the computer
graphics literature (see e.g. [12]). Typically, when performing interpolation as in [12] we use information
from the solid, such as its velocity. However, that would transfer information from the solid to the fluid,
for example, during momentum advection one would be interpolating momentum from the solid. This
is non-physical since advection should not transport conserved quantities across material interfaces. Any
transmission of momentum from the solid to the fluid should instead occur when considering the acoustic
characteristics, for example when solving for the pressure (which we consider later). Thus, for our scheme
we simply set wij = 0 for any interpolation point which is not visible. At this point one could consider
scaling up the remaining weights to get interpolation weights such that Σiwij = 1, although we have not
experimented numerically with this option. Finally, in the forward-casting step of the scheme, in order to
guarantee conservation we set fij = 0 if cell j is not visible from the interpolation point, and the remaining
weights are then scaled up to account for the missing material.

2.2. Interpolation
For our new conservative semi-Lagrangian approach we require an interpolation scheme to determine the

weights. A simple method uses linear weights between the nearest points as shown in Figure 1. While this
works rather well for conserving energy as well as converging to the correct solution, the interpolation error
can be reduced through the use of higher order interpolation. Consider for example quadratic interpolation.
If our point of interest x lies between cells i and i + 1, then we have available two valid quadratic functions:
a left-biased one which interpolates across the range (xi−1, xi, xi+1), and a right-biased one that interpolates
across the range (xi, xi+1, xi+2). The left-biased quadratic produces weights for an interpolated point x as:

αi−1,L =
x̄(x̄ − 1)

2
, αi,L = 1 − x̄ − x̄(x̄ − 1), αi+1,L = x̄ +

x̄(x̄ − 1)
2

while the right-biased quadratic produces weights for an interpolated point x as:

αi,R = 1 − x̄ +
x̄(x̄ − 1)

2
, αi+1,R = x̄ − x̄(x̄ − 1), αi+2,R =

x̄(x̄ − 1)
2

where x̄ = (x − xi)/∆x. While sufficient for a standard semi-Lagrangian scheme, these interpolations will
produce negative weights on the outlying cells (i − 1 for the left-biased one, i + 2 for the right-biased one)
when xi < x < xi+1. To alleviate these negative weights we instead always zero the weight on the outlying
cell and push the missing contribution inward. That is, for the left-biased polynomial the weights would be

α̃i−1,L = 0, α̃i,L = 1 − x̄ − x̄(x̄ − 1)
2

[
2 − φ̂i−1

φ̂i

]
, α̃i+1,L = x̄ +

x̄(x̄ − 1)
2
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Similarly, for the right-biased polynomial the weights would be

α̃i,R = 1 − x̄ +
x̄(x̄ − 1)

2
, α̃i+1,R = x̄ − x̄(x̄ − 1)

2

[
2 − φ̂i+2

φ̂i+1

]
, α̃i+2,R = 0.

This preserves the value given by the higher-order interpolation scheme and significantly reduces the likeli-
hood of a negative weight. Note that both of the quadratic interpolations provide a second order correction
to a linear interpolation. If we take both of these interpolation schemes and average them, we get the weights
that we use in the quadratic version of our scheme:

αi = 1 − x̄ − x̄(x̄ − 1)
4

(
1 − φ̂i−1

φ̂i

)
, αi+1 = x̄ − x̄(x̄ − 1)

4

(
1 − φ̂i+2

φ̂i+1

)
.

Using these modified weights we can then perform our semi-Lagrangian steps as discussed earlier. Figures 3,
4 and 5 demonstrate the significant error improvement by using this interpolation scheme. Note that in
these figures, using second-order Runge-Kutta to trace characteristic lines gives no numerical differences, as
the first order approximation is already exact.

Whereas arbitrarily high order characteristics can be traced using our semi-Lagrangian scheme, it is
this negativity in the interpolation weights which so far has restricted our method to first order accuracy.
Negative weights are not entirely detrimental, and in fact the quadratic version of our scheme admits that
to some lesser degree. If the sum of all the weights at a grid node is equal to some ε < 0 at a grid node, then
we simply forward-advect 1 + ε amount of material. The problem is that a typical quadratic interpolation
scheme can have rather large positive weights balancing out rather large negative weights on the side of the
interval from which two points are used, and this seems to lead to difficulties. Our process of merging the
weights to form α̃ from α tends to cancel out these large positive and negative values making the result more
reasonable. Of course one can guarantee that the weights never become negative by simply using standard
multi-linear interpolation.

It may be possible to make a second order accurate scheme using only order first order accurate interpo-
lation stencils, as was done in the modified MacCormack scheme of [44] and the modified BFECC scheme
of [6]. Another interesting approach would be to apply a second order non-conservative correction to a full
conservative first order accurate scheme.

2.3. Examples
In order to demonstrate the conservation properties of our scheme, we consider an advected sine-wave

“bump” using a constant velocity field. That is,

φ̂(x, 0) =

{
1
2

(
1 + sin

(
4π ∗ (x − 3

8 )
))

.25 ≤ x ≤ .75
0 else

(6)

with u = 1. The problem is discretized over the domain [0, 5], and we solve Equation (2) with a CFL number
of .9. In Figure 2(a), we show the solution as computed by a standard non-conservative semi-Lagrangian
advection, while Figure 2(b) shows the solution computed by our new scheme. As we expect, the solutions
of the two methods agree and both converge to the analytic solution. Figure 3 shows a comparison between
using linear and quadratic interpolation in our method. Figure 4 shows the same comparison using a CFL
number of 2.9 instead of 0.9. Note that the errors are much smaller since approximately three times fewer
time steps (and thus interpolations) are needed. In Figure 5 we run this simulation three times longer with
a CFL of 2.9 showing errors more commensurate with Figure 3 as expected. We also demonstrate the order
of convergence in Table 1 which shows that our algorithm gives first order convergence.

Figure 6 considers a square wave in the divergent velocity field u = sin(πx/5). Note the marked difference
between the conservative and non-conservative method. Figure 8 shows dramatic loss of conservation in the
standard semi-Lagrangian method as compared to the conservative version which maintains exact value up
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(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 2: A sine-wave “bump” is advected through a uniform velocity field. Shown is the solution at time t = 3s. We apply
the first order version of both the standard semi-Lagrangian advection, as well we our proposed conservative semi-Lagrangian
advection scheme.
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 3: Error curve for the advected sine-wave “bump” in a constant velocity field u = 1 at time t = 3s for linear and
quadratic interpolation using our proposed conservative semi-Lagrangian advection scheme, run with a CFL number .9. Using
a higher-order interpolation scheme gives noticeably reduced error; for example at ∆x = 5/256 the peak error for the linear
interpolation scheme is .111, while the quadratic interpolation scheme has a peak error of .060.
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 4: Error curve for the advected sine-wave “bump” in a constant velocity field u = 1 at time t = 3s for linear and
quadratic interpolation using our proposed conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As
there are no temporal errors (as any semi-Lagrangian ray exactly captures the characteristic curve), all errors are due to the
application of an interpolation scheme. The larger CFL number permits time steps almost three times larger than those taken
for Figure 3, and so the error introduced by the interpolation scheme are significantly smaller.
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(a) Linear interpolation.

(b) Quadratic interpolation.

Figure 5: Error curve for the advected sine-wave “bump” in a constant velocity field u = 1 at time t = 9s for linear and
quadratic interpolation using our proposed conservative semi-Lagrangian advection scheme, run with a CFL number 2.9. As
there are no temporal errors (as any semi-Lagrangian ray exactly captures the characteristic curve), all errors are due to the
application of an interpolation scheme. As such the number of interpolations needed decreases as the CFL number increases,
and the error goes down proportionally. If we run the same simulation with a larger CFL number and a proportionally longer
period of time, the errors become similar (see Figure 3).
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Coarse Res Fine Res Convergence Order
128 256 0.9384
256 512 1.2062
512 1024 1.1614
1024 2048 1.1260
2048 4096 0.9938

Table 1: Convergence order is computed by taking the log2(ce/fe) where ce is the error in the coarse resolution simualtion and
fe is the error in the fine resoltuion simulation. The order is averaged over all relevant points.

to round off error. Figure 7 shows a convergence analysis for the two schemes using a high resolution full
conservative ENO method [45] as a ground truth. As is typical the non-conservative method converges to
the wrong solution whereas our new method converges to the result obtained via ENO. The reason the
non-conservative method converges to the wrong solution in this case is that it solves Equation (1) whereas
our method solves Equation (2). In comparing these two equations, standard semi-lagrangian advection is
missing the φ̂(∇ · ~u) term.

We also consider the Zalesak disc example, discussed in [54]. In this example a notched disk is advected
through a velocity field specified by

u = (π/314)(50 − y)
v = (π/314)(x − 50)

Shown in Figure 9 is the disk after one rotation, for a variety of resolutions. We also plot the total mass
of the system as a function of time, in Figure 10; note that a standard semi-Lagrangian scheme fails to
conserve the mass of the disk. The conservative semi-Lagrangian scheme conserves the mass of the disk up
to roundoff error.

3. Incompressible flow

We model incompressible flow using the viscous Navier-Stokes equations, given by{
~ut + ~u · ∇~u + ∇p

ρ = 1
ρ∇ · (µ∇~u)

∇ · ~u = 0
(7)

where ~u is the fluid velocity, p is the pressure and µ is the coefficient of viscosity (which is taken to be
constant). For the sake of illustration, we use a fairly simple time discretization scheme. First we account
for the ~u · ∇~u term by advecting ~un forward in time using the incompressible velocity field ~un with a semi-
Lagrangian advection scheme, giving an advected velocity ~u?. This velocity field is projected and made
incompressible by solving

∆t∇ · 1
ρ
∇p = ∇ · ~u? (8)

to obtain a pressure, which is then applied via:

~u?? = ~u? − ∆t

ρ
∇p. (9)

Viscous forces are next implicitly accounted for by solving

~̃un+1 = ~u?? +
∆t

ρ
∇ · (µ∇~̃un+1), (10)
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(a) t = 0s.

(b) t = 1s.

(c) t = 2s.

(d) t = 3s.

(e) t = 4s.

(f) t = 5s.

Figure 6: We consider the evolution of density in a velocity field that is specified by u(x) = sin
`
π x

5

´
. In such a velocity field, the

standard semi-Lagrangian approach fails to capture the rarefaction and converges to a non-physical solution. This simulation
is run with ∆x = 5/8192.
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(a) Standard semi-Lagrangian advection.

(b) Conservative semi-Lagrangian advection.

Figure 7: A square wave that evolves with a divergent velocity field u = sin
`
π x

5

´
. Shown is the solution at time t = 3s.

We apply the first order version of both the standard semi-Lagrangian advection, as well as our proposed conservative semi-
Lagrangian advection scheme. In this example, we see the standard semi-Lagrangian advection scheme converges to the wrong
solution.

13



Figure 8: Shown is the time history of
P

i ∆xφ̂i for a square wave that is evolved through a divergent velocity field with u =
sin

`
π x

5

´
. Solutions for both the standard semi-Lagrangian advection scheme and our proposed conservative semi-Lagrangian

advection scheme are shown at high-resolution with ∆x = 5/8192.

after which we project the flow field again by solving Equation (8) (replacing ~u? with ~̃u), and then finally
updating the flow field to time tn+1 via

~un+1 = ~̃un+1 − ∆t

ρ
∇p. (11)

A standard Marker and Cell (MAC, [13]) grid discretization is used, storing fluid velocity in a component-
by-component fashion on cell faces. By treating the viscous forces implicitly, we alleviate the viscous time
step restriction.

3.1. Momentum-conserving scheme
In order to derive a completely conservative scheme for the momentum, we reformulate the incompressible

flow equations slightly. First, we multiply Equation (7) through by density, giving the following equations
in two spatial dimensions:

ρut + ρuux + ρvuy + px = (µux)x + (µuy)y, (12)
ρvt + ρvux + ρvvy + py = (µvx)x + (µvy)y. (13)

Next, we make use of conservation of mass, given in two spatial dimensions as ρt + (ρu)x + (ρv)y = 0,
noting that for incompressible flow this is identical to ρt + uρx + vρy = 0. If we combine this with the
equations above, we can introduce the momentum Lu = ρu, Lv = ρv and derive the conservation form of
the incompressible flow equations as

(Lu)t + (Luu)x + (Luv)y + px = (µux)x + (µuy)y, (14)
(Lv)t + (Lvu)x + (Lvv)y + py = (µvx)x + (µvy)y. (15)
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Figure 9: After one full rotation of the Zalesak disk [54] using our proposed conservative semi-Lagrangian advection scheme,
for a variety of grid resolutions. Shown is the .5 isocontour for grid resolutions ∆x = 2−7, 2−8, 2−9, 2−10, and 2−11, in
addition to the analytic solution. The mass of the disk is properly conserved using our method (this is verified in Figure 10),
while the standard semi-Lagrangian advection scheme loses significant mass. In this light, our scheme can be thought of as the
conservative advection of a smeared-out Heaviside color function.
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Figure 10: Shown is the time history of Σi∆xφ̂i + Σout − Σin for Zalesak Disk with ∆x = 2−7. Time history for the standard
semi-Lagrangian advection scheme is shown in red, while our proposed conservative semi-Lagrangian advection scheme is shown
in green.

For advection we solve (Lu)t + (Luu)x + (Luv)y = 0 for L?
u using our new conservative semi-Lagrangian

scheme. Similarly, (Lv)t + (Lvu)x + (Lvv)y = 0 is solved for L?
v. This small change in form of the equa-

tions yields an advection scheme which is robust to the numerical viscosity effects typically seen in a semi-
Lagrangian advection solver.

We use the standard pressure update to compute the pressure, where the intermediate velocity field
is computed as u? = L?

u/ρ and v? = L?
v/ρ. Equation (9) and (12), (13), (14), (15) illustrate that the

pressure already acts as a conservative momentum flux between fluid cells. For fluid cells which lie along the
fluid-structure interface, pressure acts as a momentum flux from the fluid cell faces to the solid, and vice
versa. Thus, after projection we can simply update our x-momentum as L??

u = ρu?? and y-momentum as
L??

v = ρv??, after applying the correction defined in Equation (9) to the velocity field ~u?.
The viscous terms are treated implicitly by solving ρũn+1−ρũ??

∆t = (µũn+1
x )x +(µũn+1

y )y which for constant
density and viscosity becomes

L̃n+1
u = L??

u + ∆tµ∇2ũn+1, (16)

similar to Equation (10) above. In order to properly account for momentum transfer during the viscous
stage, we are careful to view this viscosity update in a flux-based form. That is, µux acts as a momentum
flux in between the MAC grid stencil locations of u values, and µuy acts as a momentum flux in between
MAC grid u stencil locations in the other direction. The same approach is used to update v velocities, using
µvx and µvy as momentum fluxes between MAC grid v stencil locations. This gives

L̃n+1
v = L??

v + ∆tµ∇2ṽn+1. (17)

These intermediate quantities are again projected by solving Equation (8) (replacing ~u? with ~̃un+1). The
time tn+1 velocity field is computed using Equation (11), and momentum is updated as Ln+1

u = ρun+1 and
Ln+1

v = ρvn+1.
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(a) Standard semi-Lagrangian scheme. (b) Momentum-conserving scheme.

(c) Kinetic energy-conserving scheme.

Figure 11: Streamlines for the driven cavity example using standard semi-Lagrangian advection, our proposed momentum-
converging method, and our proposed kinetic energy-conserving method. All simulations are run with ∆x = 2−7.
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3.2. Examples
We consider a cavity with high viscous forces that is driven by a flat, horizontal velocity profile with

magnitude 1m/s on the top boundary of the domain. All walls in the domain are closed, the computational
domain is 1m× 1m with ∆x = .01, and a driving flow moving at speed 1 m/s. Density is 1, and the viscous
forces are determined by µ = 100 Pa · s. Viscosity causes a vortex to form in the cavity, which quickly
settles to steady-state. The resulting steady-state solutions are shown in Figure 11 for the standard semi-
Lagrangian advection scheme and our momentum-conserving semi-Lagrangian advection scheme. Examining
the pressure along the internal boundary, it is interesting to note that both schemes produce 0 net force acting
on the solid boundary (i.e.

∑
∂Ω pd ~A = 0), but the magnitude of the force isn’t (i.e.

∑
∂Ω |p| 6= 0), suggesting

that we properly capture linear momentum but angular momentum remains an issue.
Next we consider the simple case of flow past a sphere with closed walls on the top and bottom of the

domain, inflow velocity with magnitude 2 m/s from the left side of the domain and an open outflow boundary
on the right side of the domain with p = 0. For this example we used a domain of (0, 0)× (2, 1) (in meters),
no viscosity and a grid size defined by ∆x = .01. The solution at time t = 9s is shown in Figure 12, using our
proposed momentum-conserving scheme. The results of a standard semi-Lagrangian scheme are qualitatively
(but not quantitatively) similar as expected.

We also carry out a detailed study of the momentum, for both our scheme and the standard semi-
Lagrangian scheme. The bottom two lines in Figure 13 show the cumulative momentum advected into
and out of our of the domain for the semi-Lagrangian scheme, while the middle two lines show these same
quantities for our momentum-conserving scheme. Since the flow is divergence free, one would generally
expect these lines to be commensurate, however, due to numerical errors in interpolation there is some
drift, which accumulates as the simulation carries forward. As pointed out above, the pressure acts as a
conservative flux between fluid velocity degrees of freedom. Along solid wall boundaries, such as the top and
bottom of the domain and around the sphere, the pressure can be scaled by the cell face size and ∆t to give
an impulse, suggesting that it represents a momentum-preserving collision between the solid and the fluid.
However, since these walls are stationary, i.e. they have infinite mass, they remove momentum from the flow.
If we sum the momentum lost along the walls we obtain the bottom two lines shown in Figure 14 for the
semi-Lagrangian scheme and our momentum-conserving scheme respectively. Momentum is also introduced
into the domain via pressure at the inflow boundary condition, where an upstream pressure profile is used to
maintain a constant inflow velocity. The gains due to inflow are shown in Figure 14 for the semi-Lagrangian
method on the top curve, and the second curve from the top is for our momentum-conserving method. Note
that since p = 0 at the outflow boundary, no momentum is lost. Figure 15 shows the result if we sum
the previous graphs accounting for all the momentum advected into and out of the domain as well as the
pressure fluxes at the walls and inflow. The bottom line, which is 0 to numerical roundoff, shows that our
momentum-conserving scheme does indeed conserve momentum during the semi-Lagrangian advection step
(which is the only term not accounted for in the previous graphs). In contrast, the standard semi-Lagrangian
scheme gains momentum during the advection step. Although we did not compute the momentum gained
by carefully looking at that step, we can accurately compute it by accounting for all the remaining terms
and seeing what is left over.

4. Treating kinetic energy

It is interesting to consider incompressible flow from the standpoint of kinetic energy. Although kinetic
energy is not conserved for a viscous fluid, it is conserved for an inviscid fluid. Moreover, it should be
conserved during the semi-Lagrangian advection stage, even though it typically is not. We begin by deriving
the time derivative of K = 1

2ρ~u · ~u as

Kt =
1
2

(ρ~u · ~u)t =
1
2
~u · ~uρt + ρ~u · ~ut

=
1
2
~u · ~u (−~u · ∇ρ) + ~u · (∇ · τ − ρ~u · ∇~u −∇p) .
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We take advantage of Equation (7) from above, and observe that

1
2
(~u · ~u)~u · ∇ρ + ρ~u · (~u · ∇~u) =

1
2
(~u · ~u)~u · ∇ρ +

1
2
ρ~u · ∇ [~u · ~u]

=
1
2
~u · ∇ [ρ~u · ~u] = ~u · ∇K

= ∇ · (K~u).

Note that we can freely add in p∇·~u and K∇·~u, which are both analytically zero. This gives time evolution
of kinetic energy in conservative form as

Kt + ∇ · [(K + p)~u] = ~u · (∇ · τ). (18)

4.1. Advection
We compute and store kinetic energy on horizontal u faces as Ku = 1

2ρu2, and at vertical v faces as
Kv = 1

2ρv2, and evolve them forward in time separately as they only couple together through pressure
fluxes, similar to the advection of the velocity field.

For advection, we solve (Ku)t + (Kuu)x + (Kuv)y = 0 for K?
u and (Kv)t + (Kvu)x + (Kvv)y = 0 for

K?
v , using the time tn velocity field ~un. In doing so, we explicitly conserve the kinetic energy of the system

during the advection step, which has the effect of relieving the artificial viscosity effects typically seen when
using a standard semi-Lagrangian advection scheme.

Once we compute K? advected quantities, we use these kinetic energies to determine the magnitudes of
the intermediate fluid velocity field ~u?. That is, u? = ±

√
2K?

u/ρ and v? = ±
√

2K?
v/ρ. We also advect fluid

velocities forward in time (using either the semi-Lagrangian scheme or the momentum-conserving scheme)
and use the sign of the resulting velocity field to determine the sign of u? and v?.

4.2. Projection
The modified ~u? values are used in Equation (8) to compute the fluid pressure. Unlike the momentum

update, where the pressure itself acts as a momentum flux and the result of the projection does conserve
momentum, for kinetic energy we not only don’t have good values for the flux p~u in Equation (18), but
the resulting post-velocity projection does not have the same kinetic energy as the pre-projected velocity.
Indeed, the change in kinetic energy due to the projection is

∆Ku =
ρ

2
(
(u??)2 − (u?)2

)
∆Kv =

ρ

2
(
(v??)2 − (v?)2

)
=

ρ

2
(u?? + u?) (u?? − u?) =

ρ

2
(v?? + v?) (v?? − u?)

=
ρ

2
(u?? + u?)

(
−∆t

ρ
px

)
=

ρ

2
(v?? + v?)

(
−∆t

ρ
py

)
= −∆tû (px) . = −∆tv̂ (py) .

where û = u??+u?

2 and v̂ = v??+v?

2 , and we use Equation (9) to replace (u?? − u?) and (v?? − v?) terms
respectively. Then ∆Ku and ∆Kv look like ∆tûpx and ∆tv̂py respectively, overall accounting for the ~u · ∇p
component of ∇ · (p~u). Analytically we would expect this to be sufficient in an incompressible flow, as
p∇·~u = 0, but examining this update from the discrete standpoint we note that ∇· ~̂u = 1

2∇·~u? + 1
2∇·~u?? =

1
2∇ · ~u? 6= 0 in general and some kinetic energy is lost. If we examine the sum of the terms of the update for
cell faces i − 1/2 and i + 1/2,

ûi+1/2
pi+1 − pi

∆x
+ ûi−1/2

pi − pi−1

∆x
,

we can rearrange terms slightly, giving

ûi+1/2pi+1

∆x
− pi

ûi+1/2 − ûi−1/2

∆x
−

ûi−1/2pi−1

∆x
,
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where the boxed term, when summed over all spatial dimensions for cell i, gives a discrete approximation of
−p∇ · ~̂u. That is, by performing an update using ∆Ku and ∆Kv, we are losing exactly this component of
the flux. If we view each individual component of the boxed term, piui+1/2/∆x, these can be thought of as
fluxes between cell face i + 1/2 and cell center i; then the kinetic energy that has been lost in this update
is precisely the kinetic energy that accumulates to a cell center, rather than being fully distributed to our
degrees of freedom.

Various strategies can be taken to address this, such as taking the accumulated cell-centered kinetic
energy and distributing it equally to all of the surrounding cell faces. We plan on looking into this more
in future work [22], but for now we accept the loss of kinetic energy due to projection and incorporate the
change in kinetic energy by simply using ∆Ku and ∆Kv as computed above.

If we consider the pressure at a grid cell i and scale it up by the area of a cell face and ∆t, we get
the impulse p̂i between dual-cells i − 1/2 and i + 1/2. In multiple spatial dimensions, this impulse couples
together the orthogonal directions, involving every cell face incident to cell i. This impulse exchange can be
thought of as a collision between neighboring dual cells. Along this line of reasoning, it is interesting to note
that while collisions preserve momentum and total energy, they do not conserve kinetic energy unless the
coefficient of restitution is 1. Typically in a collision kinetic energy is lost, and the collisions in this system—
with one exception—are no different. In the special case where (∇ · ~u?)i = 0, then the multi-dimensional
collision that occurs at cell i does indeed conserve kinetic energy, and can be thought of as a fully elastic
collision with a coefficient of restitution equal to 1.

For the momentum update, the application of these collision-based impulses can be done in any order;
that is, we can freely iterate over impulses, updating the momentum by applying impulses in a Gauss-Seidel
manner. This is not the case for the energy update, as the application of one impulse changes the energy
updated by all subsequent impulses due to the cross-terms which arise. If we let ρ = m

∆x∆y , then the update
takes the form

ûnew = ûold +
p̂i

m
, (19)

where p̂i is the impulse defined above. If we consider the change in kinetic energy after these updates,

∆KE =
1
2
m(ûnewer)2 − 1

2
m(ûold)2

=
1
2
m

[(
ûold +

p̂i

m
− p̂i+1

m

)2

− (ûold)2
]

=
1
2
m

[
(ûold)2 + ûold

(
p̂i

m
− p̂i+1

m

)
+
(

p̂i

m
− p̂i+1

m

)2

− (ûold)2
]

= ûold

(
p̂i − p̂i+1

2

)
+

1
2m

(
p̂2

i + p̂2
i+1

)
− p̂ip̂i+1

m
,

then the boxed term is the cross-term which arises from the sequential application of impulse updates to
the fluid volume. Note that the result is the same regardless of which impulse p̂i or p̂i+1 is applied first.
However, one might misconstrue the gain in kinetic energy due to each impulse depending on the order in
which they were applied.
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4.3. Viscosity
After the projection in Equation (9) we compute the viscous forces via Equation (10) and then compute

the kinetic energy as seen by the fluid velocity field:

∆K =
ρ

2
(
(ũn+1)2 − (u??)2

)
=

ρ

2
(
u?? + ũn+1

) (
ũn+1 − u??

)
=

ρ

2
(
u?? + ũn+1

)(∆t

ρ
∇ · (µ∇u??)

)
= ∆tũ∇ · (µ∇u??) ,

where ũ = u??+ũn+1

2 and we use Equation (10) to eliminate the
(
ũn+1 − u??

)
term. This gives us K?? =

K̃n+1 +∆K, the loss of kinetic energy due to viscous effects (noting in the case of inviscid flow that ∆K = 0
and K?? = K̃n+1 = Kn+1). Once K?? is computed, it is projected again as discussed above.

4.4. Examples
We first reconsider the driven cavity case from Section 3.2 using our kinetic energy-conserving semi-

Lagrangian advection scheme. For this simple case, we do not attempt to correct for the kinetic energy
losses due to the inelastic collisions dictated by the p̂ discussed above. That is, kinetic energy is lost during
the projection step, even though we know how much is lost to each cell center, as adding this kinetic energy
back into the flow field would lead to a divergent velocity field. The simple case of the driven cavity is
shown in Figure 11, showing that the kinetic energy-conserving scheme compares well with the other two
schemes. Unfortunately, for more interesting cases such as the one shown in Figure 12, the inability to create
a divergence-free velocity field that is consistent with the kinetic energy posses an issue, and the results are
qualitatively different.

In spite of that we carry out an analysis for the momentum and kinetic energy in all three schemes:
the original semi-Lagrangian scheme, the momentum-conserving scheme, and the kinetic energy-conserving
advection scheme, which correctly conserves kinetic energy during advection but fails to account for kinetic
energy loses during projection. The reason for this quantitative analysis is to illustrate where the kinetic
energy goes, in each of these schemes. We begin by considering the momentum. The top two lines in
Figure 13 represent the momentum advected into and out of the domain across the inflow and outflow for
the kinetic energy-conserving scheme. The middle two lines in Figure 14 account for the momentum fluxing
through solid wall boundaries due to pressure, as well as the pressure flux at the inflow of the domain. For
Figure 15, the top line is the sum that represents the momentum loss during advection. Note that this is
rather large when compared to the other two schemes, in part because the advected velocity is not consistent
with kinetic energy.

Finally, we consider the kinetic energy transfer of all three schemes. Figure 16 shows the kinetic energy
advected into and out of the domain across inflow and outflow boundaries. Figure 17 shows the energy
gained due to the pressure interacting with both the solid wall boundaries and pressure flux at the inflow
boundary. Note that in this case the pressure acts as a collision between a fluid cell and a solid wall boundary,
and that collisions influence both the momentum and the kinetic energy. Similar collisions happen at the
inflow, where kinematically moving ghost cells collide with our fluid domain. A new term that we didn’t
consider for the momentum is the loss of kinetic energy during projection, where fluid cells collide with each
other in a partially elastic way, losing kinetic energy; these loses are shown in Figure 18 for each of the
three schemes. Figure 19 shows the sum of all these terms discussed, leaving only losses which occur during
the advection stage of our schemes. Note that our kinetic energy-conserving advection scheme does indeed
conserve kinetic energy during advection, whereas both the standard semi-Lagrangian scheme as well as the
momentum-conserving scheme lose kinetic energy in this step.
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Figure 12: Stream-line visualization of flow past a sphere.

5. Compressible flow

We model compressible flow using the inviscid Euler equations, ρ
ρ~u
E


t

+

 ∇ · [ρ~u]
∇ · [ρ~u ⊗ ~u] + ∇p
∇ · [(E + p)~u]

 = 0, (20)

where ρ is the fluid density, ρ~u is the momentum, E = ρe+ 1
2ρ~u ·~u is the total energy per unit volume and e

is the internal energy per unit mass. These are solved using the splitting proposed in [21]. Defining the state
vector as ~U = (ρ, ρ~u,E)T , the flux is split into its advective component, F1(~U), and acoustic component
F2(~U):

F1(~U) =

 ∇ · [ρ~u]
∇ · [ρ~u ⊗ ~u]
∇ · [E~u]

 , F2(~U) =

 0
∇p

∇ · [p~u]

 . (21)

The method first computes F1(~U) explicitly with the MENO advection scheme, which uses density-
averaged velocities at cell faces, advecting the state variables to an intermediate state ~U?. That is,

ρ? = ρn − ∆t∇ · (ρ~u)
ρ~u? = ρ~un − ∆t∇ · [ρ~u ⊗ ~u]
E? = En − ∆t∇ · (E~u).

Note that ρ? = ρn+1, as the first term in F2(~U) is zero. Next, we examine the remaining component of the
momentum equation,

ρn+1~un+1 − ρn+1~u? = −∆t∇p.

We divide through by ρn+1 and take its divergence, yielding an implicit equation for pressure:

∇ · ~un+1 −∇ · ~u? = −∆t∇ · 1
ρn+1

∇p. (22)
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Figure 13: Total momentum fluxing into the computational domain and total momentum fluxing out of the computational
domain, plotted as a function of time for a standard semi-Lagrangian scheme and our proposed momentum-conserving scheme.
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Figure 14: Pressure momentum flux into solid wall boundaries, and pressure momentum flux entering the computational domain
from the inflow boundary condition, plotted as a function of time for a standard semi-Lagrangian scheme and our proposed
momentum-conserving scheme.
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Figure 15: Sum total of momentum in the domain, plus momentum fluxed out of the domain (through outflow and solid
wall boundaries), minus momentum fluxed into the domain (through inflow), plotted as a function of time for a standard
semi-Lagrangian scheme and our proposed momentum-conserving scheme.
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Figure 16: Total kinetic energy fluxing into the computational domain and total kinetic energy fluxing out of the computational
domain, plotted as a function of time for a standard semi-Lagrangian scheme, our proposed momentum-conserving scheme, and
our proposed kinetic energy-conserving scheme.
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Figure 17: Energy flux into solid wall boundaries, and energy flux entering the computational domain from the inflow boundary
condition, plotted as a function of time for a standard semi-Lagrangian scheme, our proposed momentum-conserving scheme,
and our proposed kinetic energy-conserving scheme.
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Figure 18: Change in kinetic energy due to the pressure projection step away from boundaries, plotted as a function of time for
a standard semi-Lagrangian scheme, our proposed momentum-conserving scheme, and our proposed kinetic energy-conserving
scheme. Note that in all three schemes the change in momentum due to the pressure projection step away from boundaries is
zero.
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Figure 19: Sum total of kinetic energy in the domain, plus kinetic energy fluxed out of the domain (through outflow and solid
wall boundaries), minus kinetic energy fluxed into the domain (through inflow), plus kinetic energy lost in the projection step
away from boundaries, plotted as a function of time for a standard semi-Lagrangian scheme, our proposed momentum-conserving
scheme, and our proposed kinetic energy-conserving scheme.
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In order to remain conservative, we discretize ∇ · ~u? by computing ~u? at faces. That is, we compute
∇ · ~u? = −GT ~̂u?, where −GT is the discretized divergence operator and ~̂u? are ~u? velocities averaged to
faces. Then we next eliminate the ∇ · ~un+1 term by considering the pressure evolution equation (see [8]):

pt + ~u · ∇p + ρc2∇ · ~u = 0. (23)

This is discretized as pn+1 = pa − ∆tρn(cn)2∇ · ~un+1, where pa is an advected pn pressure using the ~un

velocity field. Plugging this into (22), discretizing the gradient ∇ as G and the divergence ∇· as −GT gives
the following implicit pressure equation:[

I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT ~̂u?. (24)

where ρ̂n+1 are densities averaged to cell faces.
Finally these pressures are applied to the ~U? state to get time tn+1 quantities. Since pressure values and

momentum quantities are collocated, we average pressures to faces as pn+1
i+1/2 =

pn+1
i+1 ρn+1

i +pn+1
i ρn+1

i+1

ρn+1
i +ρn+1

i+1
, permitting

us to evaluate ∇p for the momentum update in a flux-based manner. We also want to evaluate p~u at cell
faces in order to numerically conserve total energy, and so we update the ~̂u? velocities from Equation (22)
as ~̂un+1 = ~̂u? − ∆t Gpn+1

(ρi+ρi+1)/2 . This permits us to write the numerically conservative flux-based update as

(ρ~u)n+1 = (ρ~u)? − ∆t

(
pn+1

i+1/2 − pn+1
i−1/2

∆x

)
, En+1 = E? − ∆t

(
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x

)
. (25)

In order to demonstrate our new conservative semi-Lagrangian advection, we use it to replace the MENO
advection scheme when solving F1(~U). Notably the method of [21] was able to stably compute the solutions
of compressible flow ignoring the CFL restriction due to the acoustic wave because of the implicit treatment
of pressure in Equation (24). However, they were still limited by a CFL restriction based on the fluid velocity.
Using our unconditionally stable advection scheme, we are no longer restricted to a fluid velocity-based CFL.

5.1. Example
We solve the classic one-dimensional Sod shock tube [50] using the advection-based CFL condition given

by

∆t

2

(
|u|max

∆x
+

√
|u|2max

∆x2
+ 4

|px|
ρ∆x

)
≤ 1.

as defined in [21]. The Sod shock tube takes as initial conditions

(ρ(x, 0), u(x, 0), p(x, 0)) =

{
(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.
(26)

This example is solved on a computational domain of x ∈ (0, 1), with ∆x = 2.5 × 10−3. We compare the
results of an approach using MENO and a CFL number of .9 with the results of an approach using our
conservative semi-Lagrangian advection scheme with a CFL number of 3. To illustrate convergence, we
show a plot of density at time t = .15s for a selection of grid resolutions in Figure 20, where conservative
semi-Lagrangian advection is used with the semi-implicit compressible flow solver with a CFL number of .5.
Figure 21 shows convergence when a CFL number of 3 is used. We show the same quantities for t = .8s
in Figures 23 and 24. Each figure also shows the resulting solution when solved using a traditional, fully
explicit compressible flow solver with 3rd order accuracy in time and space, for comparison. We stress that
the over-shoots near the shock front are a consequence of the semi-implicit discretization of the equations
discussed in [21], as the implicit pressure system is centrally biased; to illustrate this point, we show in
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Figure 20: Density profile of a SOD shock tube at t = .15s, as generated by the scheme detailed in [21], using our new
conservative semi-Lagrangian scheme and a CFL number of .5. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.

Figure 22 the results generated when a third order MENO advection scheme is used instead, which suffers
from these same overshoots.

Currently, in the context of compressible flows, we are working to extend our method in a fashion that
hybridizes it with a flux-based scheme such as that of [45]. The goal here would be to apply high order
accurate flux-based discretization in most of the domain (albeit with a restrictive CFL condition), yet apply
our method near moving solid boundaries and especially thin shells, see [11].

6. Conclusion

We have presented a conservative, unconditionally stable semi-Lagrangian advection scheme. The method
is built from simple, first order semi-Lagrangian building blocks. We show that the method is beneficial in
the simulation of both incompressible and compressible flows.
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Figure 21: Density profile of a SOD shock tube at t = .15s, as generated by the scheme detailed in [21], using our new
conservative semi-Lagrangian scheme and a CFL number of 3. We zoom in to the box [.725, .775] × [.1, .3], showing the shock
front in greater detail and highlighting convergence at the discontinuity.
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Figure 22: Density profile of a SOD shock tube at t = .15s, as generated by the scheme detailed in [21], using a third order
MENO advection scheme and a CFL number of .5. We zoom in to the box [.725, .775] × [.1, .3], showing the shock front in
greater detail and highlighting convergence at the discontinuity.
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Figure 23: Density profile of a SOD shock tube at t = .8s, as generated by the scheme detailed in [21], using our new conservative
semi-Lagrangian scheme and a CFL number of .5. In order to capture this later time, we extend the computational domain
to x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence. We zoom in to the box [1.812, 1.932] × [.1, .3],
showing the shock front in greater detail and highlighting convergence at the discontinuity.
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Figure 24: Density profile of a SOD shock tube at t = .8s, as generated by the scheme detailed in [21], using our new conservative
semi-Lagrangian scheme and a CFL number of 3. In order to capture this later time, we extend the computational domain to
x ∈ (−1, 2) and show only x ∈ (1, 2) to illustrate shock front convergence. We zoom in to the box [1.812, .932]× [.1, .3], showing
the shock front in greater detail and highlighting convergence at the discontinuity.
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