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Abstract

We propose a novel method for alleviating the stringent CFL condition imposed by
the sound speed in simulating inviscid compressible flow with shocks, contacts and
rarefactions. Our method is based on the pressure evolution equation, so it works
for arbitrary equations of state, chemical species etc, and is derived in a straight-
forward manner. Similar methods have been proposed in the literature, but the
equations they are based on and the details of the methods differ significantly.
Notably our method leads to a standard Poisson equation similar to what one
would solve for incompressible flow, but has an identity term more similar to a
diffusion equation. In the limit as the sound speed goes to infinity, one obtains
the Poisson equation for incompressible flow. This makes the method suitable for
two-way coupling between compressible and incompressible flows and fully implicit
solid-fluid coupling, although both of these applications are left to future work. We
present a number of examples to illustrate the quality and behavior of the method
in both one and two spatial dimensions, and show that for a low Mach number test
case we can use a CFL number of 300 (whereas previous work was only able to use
a CFL number of 3 on the same example).

1 Introduction

In this paper, we focus on highly nonlinear compressible flows with shocks,
contacts and rarefactions, for example the Sod shock tube. Traditionally these
types of problems are solved with explicit time integration (Runge-Kutta
methods, ENO, WENO etc, see e.g. [10,11,5]). Although these methods pro-
duce high quality results, small time steps are required in order to enforce the
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CFL condition of information moving only one grid cell per time step. While
this is understandable for very high Mach number flow where |u|, |u − c| and
|u + c| are all of similar magnitude, it is too restrictive for flows where the
sound speed, c, may be much larger than |u|. Moreover some flow fields might
have both high Mach number regions where shock waves are of interest as
well as low Mach number regions where the material velocities are important.
In this case, a large number of time steps are required if one is interested in
the motion of the fluid particles over an appreciable distance in the low Mach
number regions. Thus, it can be quite useful to have methods that avoid the
stringent CFL time step restriction imposed by the acoustic waves and instead
use only the material velocity CFL restriction (albeit one would expect some
loss of quality because of the implicit treatment of the acoustic waves).

To alleviate the stringent CFL restriction, [6] proposed both a non-conservative
and a conservative scheme. Their non-conservative scheme builds on the predictor-
corrector type scheme of [16] to derive an elliptic pressure equation quite sim-
ilar to ours, but for an adiabatic fluid. Our method is similar in spirit to
[6,13–15] where the calculation is divided into two parts: advection and non-
advection. The advection terms are treated with explicit time integration, and
thus the CFL restriction on the material velocity remains. Whereas one can
use a standard method such as ENO in solving the advection terms, we found
that when coupled to an implicit solution of the pressure equations (that is
inherently central-differenced) the standard ENO method sometimes leads to
spurious oscillatory behavior. Thus we designed a new ENO method geared
towards a MAC grid discretization of the data, making it more similar to
incompressible flow. We call this MAC-ENO or MENO. The remaining non-
advection terms are solved using an implicit equation for the pressure using
a standard MAC grid type formulation. Since the MAC grid is dual in both
velocity and pressure (noting that the MAC grid pressure needs to live at cell
faces for flux based methods), one needs to interpolate data back and forth.

We base the derivation of our method on the pressure evolution equation as
discussed in [2], thus making it valid for general equations of state, arbitrary
chemical species etc. Thus, our derivation has fewer assumptions and is more
straight forward than previous work, especially those based on preconditioners.
For example, [13] makes two critical assumptions in their derivation of the
implicit equation for pressure. In approximating the derivative of momentum
they discard a ∆t∇p

ρ
term, and their pressure evolution equation is missing

the advection term. Also, our method is fully conservative and thus shocks are
tracked at the right speed. We present a number of traditional examples for
highly non-linear compressible flows including the Sod shock tube, interacting
blast waves, and in two dimensions we show Flow Past a Step, Double Mach
Reflection of a Strong Shock, and a Circular Shock. We also demonstrate that
the method works well for low Mach number flow, taking an example from [7]
where the authors obtain reasonable results with a CFL number of 3. Notably,
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our method allows a CFL number of 300 (two orders of magnitude more).

2 Numerical Method

Let us consider the one dimensional Euler equations,


ρ

ρu

E


t

+


ρu

ρu2 + p

Eu + pu


x

= 0,

with ρ being the density, u the velocity, E the total energy per unit volume
and p the pressure. The flux term can be separated into an advection part and
a non-advection part,

F1(U) =


ρu

ρu2

Eu

 , F2(U) =


0

p

pu

 . (1)

We first compute the Jacobian of the advection part

J =


0 1 0

−u2 2u 0

−Eu
ρ

E
ρ

u

 .

All the Jacobian’s eigenvalues are equal to u, and it is rank deficient with left
eigenvectors of (u,−1, 0) and (E/ρ, 0,−1) and right eigenvectors of (1, u, 0)T

and (0, 0, 1)T . Since all the characteristic velocities are identical, we can apply
component wise upwinding to F1(U) without having to transform into the
characteristic variables first (as in [4]). Moreover, this advection part only
requires a time step restriction based on u.
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2.1 Implicit Pressure Update

The multi-dimensional Euler equations are

ρ

ρu

ρv

ρw

E


t

+



ρu

ρu2

ρuv

ρuw

Eu


x

+



ρv

ρuv

ρv2

ρvw

Ev


y

+



ρw

ρuw

ρvw

ρw2

Ew


z

+


0

∇p

∇ · (p~u)

 = 0,

where ~u = (u, v, w) are the velocities. Here we have advection components
in each of the 3 spatial dimensions, and they can be handled as outlined
previously in a dimension by dimension fashion (as in [11]).

We apply a time splitting as is typical for incompressible flow formulations,
first updating the advection terms to obtain an intermediate value of the
conserved variables (ρ)∗, (ρu)∗, and E∗, and afterward correct these to time
tn+1 using an implicit pressure. Since the pressure does not affect the continuity
equation, ρn+1 = ρ∗. The non-advection momentum and energy updates are

(ρ~u)n+1 − (ρ~u)∗

∆t
= −∇p (2)

and
En+1 − E∗

∆t
= −∇ · (pu). (3)

Taking motivation from the standard incompressible flow formulation (which
uses the momentum equation to derive an implicit equation for pressure), we
divide equation (2) by ρn+1,

~un+1 = ~u? − ∆t
∇p

ρn+1
, (4)

and take its divergence to obtain

∇ · ~un+1 = ∇ · ~u? − ∆t∇ ·
(

∇p

ρn+1

)
. (5)

In the case of incompressible flow, we would set ∇ · ~un+1 = 0, but for com-
pressible flow we instead use the pressure evolution equation derived in [2],

pt + ~u · ∇p = −ρc2∇ · ~u. (6)

If we fix ∇ · ~u to be at time n + 1 through the time step (making an O(∆t)
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error), we can substitute in equation (5) to get

pt + ~u · ∇p = −ρc2∇ · ~u? + ρc2∆t∇ ·
(

∇p

ρn+1

)
, (7)

which is an advection-diffusion equation with a source term. Discretizing the ~u·
∇p advection term explicitly, using a forward Euler time step, and defining the
diffusive pressure at time tn+1 as is typical for backward Euler discretization,
gives after rearrangement

pn+1−ρn(c2)n∆t2∇·
(
∇pn+1

ρn+1

)
= (pn − (~un · ∇pn)∆t)−ρn(c2)n∆t∇·~u?. (8)

Note we have discretized ρc2 at time tn. This equation can be further simplified
by using the advection equation for pressure,

pa − pn

∆t
+ ~un · ∇pn = 0

to obtain
pa = pn − (~un · ∇pn)∆t, (9)

where pa is an advected pressure which can be computed using HJ ENO [9]
or semi-Lagrangian advection [1]. Substituting in equation (8) we obtain

pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= pa − ρn(c2)n∆t∇ · ~u?. (10)

We discretize this equation at cell centers (which is typical for advection-
diffusion equations) and thus need to define velocities at cell faces for ∇ · ~u?.
Consider two adjacent grid cells, one centered at Xi and one centered at Xi+1.

Fig. 1.

We divide these into four regions Ci,L, Ci,R, Ci+1,L, Ci+1,R, where (Ci,R∪Ci+1,L)
represents a dual cell (see figure 1). Then equation (2) for Ci,R is

(ρu)n+1
i,R − (ρu)∗i,R

∆t
= −

pn+1
i+1/2 − pn+1

i

∆x/2
. (11)
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Similarly for Ci+1,L we have

(ρu)n+1
i+1,L − (ρu)∗i+1,L

∆t
= −

pn+1
i+1 − pn+1

i+1/2

∆x/2
. (12)

Adding these equations together and dividing by (ρi + ρi+1) yields

ûn+1
i+1/2 − û∗

i+1/2

∆t
= −pn+1

i+1 − pn+1
i

∆xρ̂n+1
, (13)

where ûi+1/2 =
(ρu)i,R+(ρu)i+1,L

ρi+ρi+1
= (ρu)i+(ρu)i+1

ρi+ρi+1
can be thought of as a density-

weighted face velocity, and ρ̂i+1/2 = ρi+ρi+1

2
is the cell face density. Note that

we currently use (ρu)i,R = (ρu)i and (ρu)i+1,L = (ρu)i+1, although higher order
approximations could be used. Using this discretization on equation (10) yields[

I + ρn(c2)n∆t2GT

(
1

ρ̂n+1
G

)]
pn+1 = pa + ρn(c2)n∆tGT ~̂u?, (14)

where G is our discretized gradient operator and −GT is our discretized di-
vergence operator. This is solved to obtain pn+1 at cell centers.

In summary, instead of using an equation of state (EOS) to find the pressure
for use as a flux in both conservation of momentum and energy, we use equa-
tion (14). The EOS still plays a role because it is used to determine the time tn

pressures which factor into pa and is also used to determine (c2)n. In figure 2
we show an example calculation of the pressure for our Sod shock tube ex-
ample. In the picture we plot the pressure using the equation of state at time
tn, i.e. pn, the pressure calculated using equation (14), i.e. our pn+1, and also
the pressure calculated using the EOS applied to the conservative variables
at time tn+1, i.e. pn+1

EOS. Notice in the figure that the pressure calculated from
equation (14) is a good approximation to what the pressure will be at the next
time step (i.e. pn+1

EOS) emphasizing the implicit nature of our scheme. pn is the
pressure used in a typical explicit scheme.

It is interesting to note that this derivation does not require an ideal gas
assumption, and hence should be general enough to work with any EOS (even
multi-species flow [2]).

2.2 Updating Momentum and Energy

To obtain the correct shock speeds we use a flux based method and thus need
the pressure at cell faces for equations (2) and (3), and the velocity at cell faces
for equation (3). Applying conservation of momentum to the control volumes
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tn EOS pressure
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Fig. 2. A blow-up of the pressure plot for example 6.1.1 at time t(n) = .149s and
t(n + 1) = .15s, showing that the implicit pressure calculated in equation (14) is
a good approximation to what the pressure will be at time tn+1 emphasizing the
implicit nature of our scheme. pn is also plotted to emphasize the difference between
using an implicit and explicit pressure.

Ci,R and Ci+1,L (see figure 1) gives

Dui,R/Dt = (pi − pi+1/2)/(∆xρi,R/2)

and

Dui+1,L/Dt = (pi+1/2 − pi+1)/(∆xρi+1,L/2).

The constraint that the interface remain in contact implies that Dui,R/Dt =
Dui+1,L/Dt, which can be used with the aforementioned equations to solve for
the pressure at the flux location Xi+1/2 as

pi+1/2 =
pi+1ρi + piρi+1

ρi+1 + ρi

. (15)

For solid wall boundaries, we reflect the pressure and density values as usual,
and then use equation (15). The cell face velocity is computed via equa-
tion (13), and pi+1/2ûi+1/2 is used in equation (3).
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3 Time Step Restriction

The eigenvalues of the Jacobian of the advection part of the flux are all u.
Since we solve the acoustic component implicitly, we no longer have a severe
time step restriction determined by the speed of sound c, and all that remains
is to find an estimate for the maximum value of |u| throughout the time step.
Simply using un is not enough, since e.g. Sod shock tube starts out with an
initial velocity identically zero and thus un would imply an infinite ∆t. To
alleviate this, we add a term that estimates the change in velocity over a
time step similar to what was done in [8]. Assuming the flow is smooth, we
combine conservation of mass and momentum to give an equation for the
velocity, ut + u · ∇u + ∇p

ρ
= 0. The temporal update of this equation would

advect velocity based on the u · ∇u term, but also increase the velocity by
an amount equal to ∇p

ρ
. In one spatial dimension, we use this to estimate the

velocity at the end of the time step as

(
|un|max+

|px|
ρ

∆t

∆x

)
and the CFL condition

becomes

∆t

 |un|max + |px|
ρ

∆t

∆x

 ≤ 1. (16)

This is quadratic in ∆t with solutions

−|un|max −
√
|un|2max + 4 |px|

ρ
∆x

2|px|/ρ
≤ ∆t ≤

−|un|max +
√
|un|2max + 4 |px|

ρ
∆x

2|px|/ρ
.

As the lower limit is always non positive and ∆t ≥ 0, we only need to enforce
the upper bound. As px → 0, both the numerator and denominator vanish
and thus we obtain a more convenient time step restriction by replacing the
2nd ∆t in equation (16) with this upper bound to obtain

∆t

2

 |un|max

∆x
+

√√√√( |un|max

∆x

)2

+ 4
|px|
ρ∆x

 ≤ 1. (17)

Note that this is not linear in ∆x, but as ∆x → 0 we obtain a more typical
CFL condition ∆t < ∆x

|un|max
. In two spatial dimensions our CFL follows along

the lines of [8]’s equation 95 and is given by:

∆t

2

 |u|max

∆x
+

|v|max

∆y
+

√√√√( |u|max

∆x
+

|v|max

∆y

)2

+ 4
|px|
ρ∆x

+ 4
|py|
ρ∆y

 ≤ 1.

All of our examples are stable for CFL number α = .9, and all of our examples
were unstable for α = 1.3. Some examples (e.g. example 6.1.8) blow up for
α = 1.
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4 Modified ENO Scheme

When using traditional ENO methods for the advection part of our equations
(as in [11]), we obtained excessive spurious oscillations. This seems to be re-
lated to our dual cell center and MAC grid formulation, thus we device a new
ENO scheme which better utilizes that dual formulation. We call this Mach-
ENO or MENO. The main idea is to replace the advection velocity with the
MAC grid value defined at the flux in question, i.e. û. The lowest level of the
divided difference table is typically constructed with the physical fluxes, i.e.
ρu, ρu2 and Eu for F1(U) in equation (1). A dissipation term is added for the
local and global Lax-Friedrichs versions. Consider constructing an ENO ap-
proximation for the flux at Xi+1/2. Locally, we would use a divided difference
table with base values corresponding to the physical fluxes plus or minus the
appropriate dissipation. Our modification is to replace ρjuj, ρjuj

2, and Ejuj

with ρjûi+1/2, ρjujûi+1/2, and Ejûi+1/2 leaving the dissipation terms unaltered.
Note that ûi+1/2 is fixed throughout the divided difference table similar to the
way one fixes the dissipation coefficient.

In order to validate our new MENO scheme, we compared it to the standard
scheme from [11] for the standard Sod shock tube in Figure 3. For this prob-
lem and other fully explicit simulations the results were fairly similar, but
when we ran the simulations with our semi-implicit formulation the MENO
scheme performed much better, and in fact the standard ENO scheme was not
successful in producing any solution whatsoever for figure 11 in our examples
section.

5 Time Integration

While the explicit component of our update is an upwind scheme, the implicit
component is centrally-differenced. This tends to introduce more dispersive
rather than dissipative errors to the solution (i.e. there is more of an imaginary
component to the eigenvalues), which suggests the use of Runge-Kutta over
forward Euler.

We use two variations of the third order TVD Runge-Kutta scheme [10] in all
of our examples. The first is to perform Runge-Kutta on just the advection
part, F1(U), with only one final implicit solve for F2(U). The second variation
is to carry out both F1(U) and F2(U) for each Runge-Kutta stage, noting that
this has three times the computational cost as far as the implicit solution of
F2(U) is concerned. In general we observed better performance, especially in
controlling overshoots, when using the second variation (see figure 4). However,
some examples (in particular the high Mach number ones) do tend to show
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(a) Standard ENO-LLF

 0
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 0.8

 0  0.2  0.4  0.6  0.8  1

(b) MENO-LLF

Fig. 3. Sod shock tube problem at t = .15s. Left: Standard ENO-LLF (Local
Lax-Friedrichs) using 401 grid points (green) and 1601 grid points (red). Right:
The base 1601 grid points solution is the same as in the left figure, but the coarse
grid calculation (with 401 grid points) is done with the new MENO scheme. Velocity
is shown in both figures. Both simulations were done with explicit time integration
and a full characteristic decomposition in order to demonstrate that the new ENO
schemes performs similar to the old one when one is not using our new implicit
discretization of the pressure.

more oscillations (see figure 4, bottom). These oscillations are less predominant
when combined with MENO, so we show all of our examples with the second
variation.

6 Numerical Results

6.1 One dimensional Validation

For the one dimensional tests, we use a computational domain of [0, 1], 401
grid points, and also plot a baseline solution using 1601 grid points in the
standard fully explicit ENO method as in [11]. A second order ENO was
used along with the CFL number of .5. Unless otherwise noted the maximum
Mach number in each example lies within the range (.9, 2.5). All units are
in S.I. Generally speaking our method is a perturbation of those proposed
by [13,14] and thus demonstrates similar qualitative behavior. Timings are
shown in table 1. In particular note that the implicit scheme is generally
more efficient than the explicit scheme predominantly because we avoid the
characteristic decomposition and can advect all three independent variables
simultaneously because they all have the same eigenvalue u. At first glance
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(a) One implicit solve
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(b) Three implicit solves
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(c) One implicit solve

 0.1
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 0.8
 0.9
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 0  0.2  0.4  0.6  0.8  1

(d) Three implicit solves

Fig. 4. Numerical results comparing placing the implicit solve either inside each
Runge-Kutta stage (b and d) or once after a full three stage Runge-Kutta cycle
(a and c). The top two figures show the results for a Sod shock tube problem at
t = .15s, the bottom two figures show the results for a strong shock tube problem
at t = 2.5 × 10−6s. Density is shown in all figures. Note the spurious overshoots
when the implicit solve is not included in the Runge-Kutta cycle (left two figures).
Note that we use the standard ENO scheme from [11] (not MENO) for these four
examples.

one might assume that the necessity of a pressure Poisson equation would
cancel out these efficiency gains, but practical experience shows only five or six
iterations of conjugate gradients is required to reach a reasonable tolerance.
It is unclear whether our newly proposed semi-implicit method would have
these slight efficiency gains across a wider number of examples and in multiple
spatial dimensions, however for the low Mach number flow problems for which
it was designed (such as example 6.1.8) it is significantly more efficient than
the explicit method.
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6.1.1 Sod Shock Tube

Our first test case is a standard Sod shock tube with initial conditions of

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1, 0, 1) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 5, which indicate well resolved shock, rar-
efaction and contact solutions. Since our method is conservative, we get the
correct shock speeds. The results are comparable to that of [7] and [13].

6.1.2 Lax’s Shock Tube

Lax’s shock tube is similar in nature to Sod shock tube, except that the initial
condition has a discontinuity in the velocity:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(.445, .698, 3.528) if x ≤ .5,

(.5, 0, .571) if x > .5.

Our results are shown in Figure 6. Again, the results are comparable to the
previous work.

Test name semi-implicit (seconds) explicit (seconds)

Sod shock tube 2.95 3.69

Lax shock tube 2.71 4.53

Strong shock tube 2.43 3.43

Mach 3 shock test 2.90 3.59

High Mach flow test 3.75 3.29

Interaction of blast waves (Bang Bang) 5.28 9.86

Two symmetric rarefaction waves 3.52 4.15
Table 1
Wall clock times comparing the semi-implicit method with the fully explicit method,
for 1-D examples. Simulations were run to the target times of each example as
mentioned in their respective figures.
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(a) Density
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Fig. 5. Numerical results of the Sod shock tube problem at t = .15s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

6.1.3 Strong Shock Tube

The Strong shock tube problem poses initial conditions that generates a su-
personic shock:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1, 0, 1010) if x ≤ .5,

(.125, 0, .1) if x > .5.

Our results are shown in Figure 7. The scheme admits some oscillations near
the rarefaction wave, and we see no notable difference in simulation time
when compared to the explicit simulation. With that in mind, we note that
the main advantage of the proposed method is to take time steps irrespective
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Fig. 6. Numerical results of the Lax’s shock tube problem at t = .12s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

of the sound speed values; in cases of high Mach number flows (or high Mach
number regions of the flow – if asynchronous time integration is used), one
could use a typical ENO scheme.

6.1.4 Mach 3 Shock Test

The initial conditions for the Mach 3 shock test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(3.857, .92, 10.333) if x ≤ .5,

(1, 3.55, 1) if x > .5.
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Fig. 7. Numerical results of the strong shock tube problem at t = 2.5 × 10−6s. The
explicit baseline solution is plotted in red, and the solution from our method is
plotted in dotted green.

Our results are shown in Figure 8. As above we do note some oscillations near
the rarefaction wave.

6.1.5 High mach flow test

The initial conditions for the High mach flow test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(10, 2000, 500) if x ≤ .5,

(20, 0, 500) if x > .5.

As noted in [7] the Mach number in this test can reach as high as 240. Our
results are shown in Figure 9.
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Fig. 8. Numerical results of the Mach 3 shock tube problem at t = .09s. The explicit
baseline solution is plotted in red, and the solution from our method is plotted in
dotted green.

6.1.6 Interaction of blast waves

Here we present a test of two interacting blast waves. This problem was intro-
duced by [12] and involves multiple strong shock waves. The initial conditions
for the test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =


(1, 0, 103) if 0 ≤ x < .1,

(1, 0, 10−2) if .1 ≤ x < .9,

(1, 0, 102) if .9 ≤ x ≤ 1.

We also have solid wall boundary conditions at x = 0 and x = 1. Our results
are shown in Figure 10 which shows that we achieve very accurate results.
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Fig. 9. Numerical results of the High Mach shock tube problem at t = 1.75×10−4s.
The explicit baseline solution is plotted in red, and the solution from our method
is plotted in dotted green.

6.1.7 Two Symmetric Rarefaction Waves

In this test there are two rarefaction waves going in opposite directions from
the center of the domain. This causes very low density regions near the center
of the domain. The initial conditions for the test are:

(ρ(x, 0), u(x, 0), p(x, 0)) =

(1,−2, .4) if x ≤ .5,

(1, 2, .4) if x > .5.

Our results are shown in Figure 11. Our results are comparable to that of [7]
and [13]. Note that there is an unphysical pulse in the internal energy field
near the low pressure region, caused by overheating (see e.g. [3]).
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Fig. 10. Numerical results of the interacting blasts shock tube problem at t = .038s.
The explicit baseline solution is plotted in red, and the solution from our method
is plotted in dotted green.

6.1.8 Smooth Flow Test (Mach Zero Limit)

The initial conditions for the zero mach limit test are given by:

u(x, 0) = 0

p(x, 0) = p0 + εp1(x)

p1(x) = 60 cos(2πx) + 100 sin(4πx)

ρ(x, 0) =

(
p(x, 0)

p0

) 1
γ

ρ0

Where ρ0 = 1, p0 = 109, and ε = 103. Since the flow is smooth and there are
no shocks in this test, we have used a single implicit solve per time step. This
test is dominated by acoustic waves (as observed in [7]). We can take time
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Fig. 11. Numerical results of the symmetric rarefaction shock tube problem at
t = .15s. The explicit baseline solution is plotted in red, and the solution from
our method is plotted in dotted green.

steps as large as is permitted by our CFL condition in equation (17). This
permits time steps three orders of magnitude greater than those permitted
by sound-speed based CFL. However, as with all implicit schemes, taking too
large a time step can lead to inaccurate results. Thus, in order to get sufficient
accuracy, we clamp our time step to be a fixed multiple of the explicit time
step (which is calculated using the sound-speed based CFL). In figure 12 we
use 3 times the explicit time step and show convergence via grid resolution.

In a second suit of tests we show that we can increase the grid resolution
without the need to refine the time step. The timing results for this experiment
are available in table 2, where ∆t remains fixed as the grid resolution goes up as
high as 320, 000 grid cells. At that point the effective sound speed CFL is 300.
Numerical results are plotted in figure 13 and table 2 summarizes the results.
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Fig. 12. Numerical results comparing the pressure in smooth flow test at 200, 400,
800, 1600, and 3200 grid cells with an effective sound speed based CFL number 3
at t = 1.5 × 10−5s. The red curve is the explicit simulation run at 3200 grid cells
with a CFL number .5.

In particular we note that the newly proposed implicit method permits a fixed
time step all the way up to 320, 000 grid points. This allows the wall clock
simulation time to scale approximately linear to the size of the problem (since
we solve the Poisson equation using conjugate gradients, which has superlinear
complexity – however, note that one only needs the solver to converge in
the sense of truncation error as opposed to round-off error). On the other
hand, in explicit methods the simulation time grows quadratically, becoming
impractical at 320, 000 grid points. Note that since we are not refining the
time step, we do not expect to see any further convergence in the solution.
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Fig. 13. Numerical results showing pressure in the smooth flow test at 3200, 32000
and 320000 grid cells. We used an effective sound speed based CFL number of 3,
30 and 300 respectively at t = 1.5 × 10−5s. Since ∆t stays constant, the solution
remains relatively unchanged even as we get huge time step gains.

Grid Effective ∆t Wall clock time Wall clock time

Resolution sound speed (Implicit) (Explicit)

CFL

3200 3 5.01e-08 63.41s 511.67s

32000 30 5.01e-08 810.03s 60498.49s

320000 300 5.01e-08 9976.58s Impractical
Table 2
Timing results for smooth flow test, with ∆t approximately constant. The wall clock
times are shown for simulations till t = 5 × 10−5s.
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Fig. 14. Numerical results showing the contour plots of density for the flow past a
step test on a grid of size 120x40 at t = 4s. 30 contours are plotted in the range
[.2568, 6.067].

6.2 Flow Past a Step Test

Our first two dimensional experiment is similar to the one described in [3].
We assume an ideal gas with γ = 1.4. The test domain is 3 units long and 1
unit wide, with a .2 unit high step which is located .6 units from the left hand
side of the tunnel. The initial conditions are ρ = 1.4, p = 1 and u = 3 and
v = 0 everywhere in the domain. We apply an inflow boundary condition on
the left hand side of the domain, and an outflow boundary condition on the
right hand side of the domain. A reflective solid wall boundary condition is
applied for the top and bottom boundaries of the domain. We show numerical
results at t = 4s on a grid of resolution 120x40 in figure 14.

6.3 Double Mach Reflection of a Strong Shock

In a computational domain of [0, 4] × [0, 1], a planar Mach 10 shock hits a
reflecting boundary that lies along the bottom wall of the domain along x ∈
[1
6
, 4]. The plane of the shock begins at (1

6
, 0) and makes a 60◦ angle with the

reflecting plane. The left and bottom (for x ∈ (0, 1
6
)) boundary conditions

are given by the postshock condition, the right boundary by a zero-gradient
condition, and the top boundary is set to describe the exact motion of the
Mach 10 shock. If we take ~n to be the unit vector that lies normal to the
planar shock, then the initial values are given by:

(ρ(x, y, 0), u(x, y, 0), p(x, y, 0)) =

(1.4,~0, 1) preshock

(8, 8.25~n, 116.5) postshock
.
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Fig. 15. Numerical results showing the contour plots of density for the double mach
reflection of a strong shock on a grid of size 240x60 at t = .2s. 30 contours are
plotted within the range [1.731, 20.92].

Our method (see figure 15) compares well with those provided in [12], which
provides a description of this example and presents numerical results compar-
ing the performance of various methods in this problem. As is done in previous
work we only show the domain of interest ([0, 3] × [0, 1]).

6.4 Circular Shock Test

The circular shock test has an initial condition prescribed as

(ρ, u, v, p) =

(1, 0, 0, 1) if r ≤ .4

(.125, 0, 0, .1) if r > .4,

where r =
√

x2 + y2. Numerical results are shown in figure 16. The same
test was shown in [14]. Our results indicate well resolved shock and contact
solutions along with correct speed shock calculations.

7 Conclusions and Future Work

We have presented a method for alleviating the stringent CFL condition im-
posed by the sound speed in highly non-linear compressible flow simulations.
A fractional step procedure combined with the pressure evolution equation
is used. The method works for arbitrary equations of state, and in the limit
as the sound speed goes to infinity it yields the Poisson equation for incom-
pressible flow. We also presented a Mach-ENO or MENO scheme which better
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Fig. 16. Numerical results for the circular shock test on a grid of size 100x100 at
t = .25s.

utilizes a dual cell center and MAC grid formulation. The numerical exper-
iments on various benchmark problems for one and two dimensions indicate
that our semi-implicit method obtains well resolved shock, rarefaction and
contact solutions. Since our method is conservative, we also obtain correct
shock speeds. The smooth flow example illustrates the ability of our method
to take significantly large time steps for low Mach number flows as compared
to explicit methods. In future work we plan to extend our approach to handle
two-way coupling between compressible and incompressible flows, as well as
fully implicit solid-fluid coupling.

Appendix: Boundary Conditions

Figure 14 requires the handling of inflow and outflow boundary conditions.
We define Uout to be the outgoing state and Uin to be the ingoing state. The
outgoing state, Uout, is obtained by simple extrapolation whereas the ingoing
state, Uin, is obtained by attenuating Uout towards specified far-field values.
After defining Uout via extrapolation, we average the primitive variables to
cell flux on the boundary of the domain, and use those values to compute a
characteristic decomposition. If the pth characteristic field indicates ingoing
information, then when applying the ENO scheme in this characteristic field
we use Uin for the ghost node values. Otherwise Uout is used. Note for higher
order schemes boundary values will be needed for fluxes on the interior of the
domain as well, and we choose the ghost nodes (as Uin or Uout) in the same
fashion.
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Our ingoing state, Uin, is obtained by attenuating the extrapolated state,
Uout, towards a given far field state, Ufar. This is accomplished by multiplying
Uout with each of the left eigenvectors, attenuating if the eigenvalue in that
characteristic field indicates an ingoing wave, and then multiplying by the
right eigenvector. Defining the scalar characteristic information in each field
as ξp = LpUout, we would attenuate ξp towards ξp

far using the analytic solution
of the ODE

dξ/dt = K(ξ − ξfar)

for time step ∆t using initial data of ξ = ξout. We used an attenuation coeffi-
cient of K = −.5 in our examples.
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